首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
中子星内壳层中存在原子核、中子、电子等非均匀分布的物质。在Wigner-Seitz近似下,共存相方法和自洽Thomas-Fermi近似方法是描述这种非均匀物质的有效方法。中子在非均匀物质所占的比例远远大于其他组分,因此原子核的对称能对非均匀物质的性质会产生十分重要的影响,而原子核对称能的密度依赖关系在核物质饱和密度附近有较大的不确定性。采用相对论平均场理论描述核子间相互作用,研究原子核对称能对中子星内壳层的密度范围、pasta相结构、壳核相变密度等性质的影响,探寻其中可能存在的关联。计算结果表明,原子核对称能及其密度依赖性在决定中子星内壳层非均匀物质的性质中起着重要作用,这与之前相关研究中得到的结论基本相符。Within Wigner-Seitz approximation, both the coexisting phases method and the self-consistent Thomas-Fermi approximation can be used to describe the nonuniform matter consisting of nuclei, neutrons, and electrons, which may coexist in the inner crust of neutron star. Since the neutron fraction is very large, nuclear symmetry energy may have an important impact on the properties of nonuniform matter. However, the density dependence of nuclear symmetry energy around saturation density is still rather uncertain. This paper focuses on the influence of nuclear symmetry energy on the density range of inner crust, pasta phase structure, and crust-core transition density of neutron star, where the relativistic mean field theory is adopted to describe the nucleon-nucleon interaction. It is turned out that the nuclear symmetry energy and its density dependence play an import role in determining the properties of nonuniform matter in the inner crust of neutron star, which is consistent with the former related studies.  相似文献   

2.
Due to improvements in the sensitivity of gravitational wave (GW) detectors, the detection of GWs originating from the fundamental quasi-normal mode (f-mode) of neutron stars has become possible. The future detection of GWs originating from the f-mode of neutron stars will provide a potential way to improve our understanding of the nature of nuclear matter inside neutron stars. In this work, we investigate the constraint imposed by the f-mode oscillation of neutron stars on the symmetry energy of nuclear matter using Bayesian analysis and parametric EOS. It is shown that if the frequency of the f-mode of a neutron star of known mass is observed precisely, the symmetry energy at twice the saturation density (Esym(2ρ0)) of nuclear matter can be constrained within a relatively narrow range. For example, when all the following parameters are within the given intervals: 220 ≤ K0 ≤ 260 MeV, 28 ≤ Esym(ρ0) ≤ 36 MeV, 30 ≤ L ≤ 90 MeV, −800 ≤ J0 ≤ 400 MeV, − 400 ≤ Ksym ≤ 100 MeV, −200 ≤ Jsym ≤ 800 MeV, Esym(2ρ0) will be constrained to within ${48.8}_{-5.5}^{+6.6}$ MeV if the f-mode frequency of a canonical neutron star (1.4 M) is observed to be 1.720 kHz with a 1% relative error. Furthermore, if only f-mode frequency detection is available, i.e. there is no stellar mass measurement, a precisely detected f-mode frequency can also impose an accurate constraint on the symmetry energy. For example, given the same parameter space and the same assumed observed f-mode frequency mentioned above, and assuming that the stellar mass is in the range of 1.2–2.0 M, Esym(2ρ0) will be constrained to within ${49.5}_{-6.8}^{+8.1}\,\mathrm{MeV}$. In addition, it is shown that a higher slope of 69 ≤ L ≤ 143 MeV will give a higher posterior distribution of Esym(2ρ0), ${53.8}_{-6.4}^{+7.0}\,\mathrm{MeV}$.  相似文献   

3.
The microscopic mechanisms of the symmetry energy in nuclear matter are investigated in the framework of the relativistic Brueckner-Hartree-Fock (RBHF) model with a high-precision realistic nuclear potential, pvCDBonn A. The kinetic energy and potential contributions to symmetry energy are decomposed. They are explicitly expressed by the nucleon self-energies, which are obtained through projecting the G-matrices from the RBHF model into the terms of Lorentz covariants. The nuclear medium effects on the nucleon self-energy and nucleon-nucleon interaction in symmetry energy are discussed by comparing the results from the RBHF model and those from Hartree-Fock and relativistic Hartree-Fock models. It is found that the nucleon self-energy including the nuclear medium effect on the single-nucleon wave function provides a largely positive contribution to the symmetry energy, while the nuclear medium effect on the nucleon-nucleon interaction, i.e., the effective G-matrices provides a negative contribution. The tensor force plays an essential role in the symmetry energy around the density. The scalar and vector covariant amplitudes of nucleon-nucleon interaction dominate the potential component of the symmetry energy. Furthermore, the isoscalar and isovector terms in the optical potential are extracted from the RBHF model. The isoscalar part is consistent with the results from the analysis of global optical potential, while the isovector one has obvious differences at higher incident energy due to the relativistic effect.  相似文献   

4.
In the framework of the Thomas-Fermi approximation, we systematically study the EOSs and microscopic structures of neutron star matter in a vast density range with nb ≈ 10−10-2 fm−3, where various covariant density functionals are adopted, i.e., those with nonlinear self couplings (NL3, PK1, TM1, GM1, MTVTC) and density-dependent couplings (DD-LZ1, DDME-X, PKDD, DD-ME2, DD2, TW99). It is found that the EOSs generally coincide with each other at nb ≲ 10−4 fm−3 and 0.1 fm−3nb ≲ 0.3 fm−3, while in other density regions they are sensitive to the effective interactions between nucleons. By adopting functionals with a larger slope of symmetry energy L, the curvature parameter Ksym and neutron drip density generally increases, while the droplet size, proton number of nucleus, core-crust transition density, and onset density of non-spherical nuclei, decrease. All functionals predict neutron stars with maximum masses exceeding the two-solar-mass limit, while those of DD2, DD-LZ1, DD-ME2, and DDME-X predict optimum neutron star radii according to the observational constraints. Nevertheless, the corresponding skewness coefficients J are much larger than expected, while only the functionals MTVTC and TW99 meet the start-of-art constraints on J. More accurate measurements on the radius of PSR J0740 + 6620 and the maximum mass of neutron stars are thus essential to identify the functional that satisfies all constraints from nuclear physics and astrophysical observations. Approximate linear correlations between neutron stars' radii at M = 1.4M and 2M, the slope L and curvature parameter Ksym of symmetry energy are observed as well, which are mainly attributed to the curvature-slope correlations in the functionals adopted here. The results presented here are applicable for investigations of the structures and evolutions of compact stars in a unified manner.  相似文献   

5.
The energy per particle BA in nuclear matter is calculated up to high baryon density in the whole isospin asymmetry range from symmetric matter to pure neutron matter.The results,obtained in the framework of the Brueckner-Hartree-Fock approximation with two-and three-body forces,confirm the well-known parabolic dependence on the asymmetry parameterβ=(N?Z)/A(β^2 law)that is valid in a wide density range.To investigate the extent to which this behavior can be traced back to the properties of the underlying interaction,aside from the mean field approximation,the spin-isospin decomposition of BA is performed.Theoretical indications suggest that theβ^2 law could be violated at higher densities as a consequence of the three-body forces.This raises the problem that the symmetry energy,calculated according to theβ^2 law as a difference between BA in pure neutron matter and symmetric nuclear matter,cannot be applied to neutron stars.One should return to the proper definition of the nuclear symmetry energy as a response of the nuclear system to small isospin imbalance from the Z=N nuclei and pure neutron matter.  相似文献   

6.
The impact of symmetry energy slope L on the axial w-mode oscillations is explored, where the range of the con- strained slope L of symmetry energy at saturation density is adopted from 25 MeV to 115 MeV while keeping the equation of state (EOS) of symmetric nuclear matter fixed. Based on the range of the symmetry energy slope, a constraint on the frequency and damping time of the wi-mode of the neutron star is given. It is found that there is a perfect linear relation between the frequency and the stellar mass for a fixed slope L, and the softer symmetry energy corresponds to a higher frequency. Moreover, it is confirmed that both the frequencies and damping times have a perfect universal scaling behavior for the EOSs with different symmetry energy slopes at saturation density.  相似文献   

7.
对称能表征了同位旋非对称强相互作用物质状态方程的同位旋相关部分,它对于理解核物理和天体物理中的许多问题有重要意义。简要总结了关于核物质和夸克物质对称能研究的最新进展。对于核物质对称能,通过对核结构,核反应以及中子星的研究,目前对其亚饱和密度的行为已有比较清楚的认识,同时,对饱和密度附近对称能的约束也取得了很好的研究进展。但如何确定核物质对称能的高密行为仍然是一个挑战。另一方面,在极端高重子数密度条件下,强相互作用物质将以退禁闭的夸克物质状态存在。同位旋非对称夸克物质可能存在于致密星内部,也可能产生于极端相对论重离子碰撞中。对最近关于夸克物质对称能对夸克星性质的影响以及重夸克星的存在对夸克物质对称能的约束的研究工作进行了介绍,结果表明同位旋非对称夸克物质中上夸克和下夸克可能感受到很不一样的相互作用,这对于研究极端相对论重离子碰撞中部分子动力学的同位旋效应有重要启发。The symmetry energy characterizes the isospin dependent part of the equation of state of isospin asymmetric strong interaction matter and it plays a critical role in many issues of nuclear physics and astrophysics. In this talk, we briefly review the current status on the determination of the symmetry energy in nucleon (nuclear) and quark matter. For nuclear matter, while the subsaturation density behaviors of the symmetry energy are relatively well-determined and significant progress has been made on the symmetry energy around saturation density, the determination of the suprasaturation density behaviors of the symmetry energy remains a big challenge. For quark matter, which is expected to appear in dense matter at high baryon densities, we briefly review the recent work about the effects of quark matter symmetry energy on the properties of quark stars and the constraint of possible existence of heavy quark stars on quark matter symmetry energy. The results indicate that the u and d quarks could feel very different interactions in isospin asymmetric quark matter, which may have important implications on the isospin effects of partonic dynamics in relativistic heavy-ion collisions.  相似文献   

8.
在过去的十余年中,对非对称核物质的对称能的研究无论从实验还是理论上都取得了较大的突破,这对中子结构及其物态方程的理解具有十分重要的意义。本研究将采用一个相对保守的对称能斜率范围(25 Me VL105Me V)来研究其对快速转动中子星性质的约束,这些性质包括:质量-半径关系、转动惯量、引力红移以及转动形变等。通过该对称能斜率的约束,发现典型中子星(M=1.4M⊙)的半径约束在10.28~13.43 km范围内,这与最近的相关观测相一致。如果观察发现了质量较小的毫秒脉冲星,则将为核物质的对称能较软提供有效的证据。另外还发现,对角动量的一致性可为快转中子星转动惯量的上限提供约束。最后,根据具有低质量伴星的双星EXO0748-676的红移观测,给出了该脉冲星的质量下限(1.5M⊙)。  相似文献   

9.
We propose an alternative way to constrain the density dependence of the symmetry energy from the neutron skin thickness of nuclei which shows a linear relation to both the isospin asymmetry and the nuclear charge with a form of Z2/3. The relation of the neutron skin thickness to the nuclear charge and isospin asymmetry is systematically studied with the data from antiprotonic atom measurement, and with the extended Thomas-Fermi approach incorporating the Skyrme energy density functional. An obviously linear relationship between the slope parameter L of the nuclear symmetry energy and the isospin asymmetry dependent parameter of the neutron skin thickness can be found, by adopting 70 Skyrme interactions in the calculations. Combining the available experimental data, the constraint of -20 MeV L 82 MeV on the slope parameter of the symmetry energy is obtained. The Skyrme interactions satisfying the constraint are selected.  相似文献   

10.
The bulk parameters characterizing the energy of symmetric nuclear matter and the symmetry energy defined at normal nuclear density ρ0 provide important information on the equation of state (EOS) of isospin asymmetric nuclear matter. While significant progress has been made in determining some lower order bulk characteristic parameters, such as the energy E0(ρ0) and incompress ibility K0 of symmetric nuclear matter as well as the symmetry energy Esym(ρ0) and its slope parameter L, yet the higher order bulk ...  相似文献   

11.
利用Hartree-Fock理论,基于扩展的Skyrme有效相互作用,采用抛物线近似下对称能的密度相关形式以及β平衡和电中性条件,给出了中子星中质子比例的密度依赖关系.通过比较不同的势参数SII,SIII,SKM和SKI5下对称能强度系数的密度依赖关系研究了中子星中的质子比例,发现在高密时势参数SII,SIII和SKM能够给出中子星中质子消失的结果,这预示着致密核物质可能存在纯中子物质的基态.同时计算表明,考虑中子星中μ子的贡献后使质子比例增加.  相似文献   

12.
陈晏军 《中国物理C(英文版)》2019,43(3):035101-035101-1
An extended Nambu-Jona-Lasinio(eNJL) model with nucleons as the degrees of freedom is used to investigate properties of nuclear matter and neutron stars(NSs),including the binding energy and symmetry energy of the nuclear matter, the core-crust transition density, and mass-radius relation of NSs. The fourth-order symmetry energy at saturation density is also investigated. When the bulk properties of nuclear matter at saturation density are used to determine the model parameters, the double solutions of parameters are obtained for a given nuclear incompressibility. It is shown that the isovector-vector interaction has a significant influence on the nuclear matter and NS properties, and the sign of isovector-vector coupling constant is critical in the determination of the trend of the symmetry energy and equation of state. The effects of the other model parameters and symmetry energy slope at saturation density are discussed.  相似文献   

13.
Using an extended version of quantum hadrodynamics,I propose a new microscopic equation of state(EoS)that is able to correctly reproduce the main properties of symmetric nuclear matter at the saturation density,as well as produce massive neutron stars and satisfactory results for the radius and the tidal parameter.I show that this EoS can reproduce at least a 2.00 solar mass neutron star,even when hyperons are present.The constraints about the radius of a 2.00 M and the minimum mass that enables a direct Urea effect are also checked.  相似文献   

14.
The effect of the nuclear symmetry energy slope on the non-radial oscillation f-modes in neutron stars is calculated and discussed. Based on a conservative range of the symmetry energy slope constrained by the experiment and theoretical analysis, a constraint on the frequency and damping time of the gravitational radiation from the f-mode in neutron star is obtained. It is also shown that a higher symmetry energy slope corresponds with a smaller frequency and a longer damping time. Meanwhile, a new set of parameters is given to present the universal properties of the scaled frequency and damping time.  相似文献   

15.
16.
在现有的平均场模型中引入同位旋相关的高阶修正项.研究了核物质对称能的密度依赖性和。^208Pb的中子皮厚度。采用新提出的PK1相互作用以及NL3.S271和Z271相互作用.得到核物质饱和点对称能的范围为29-38MeV以及相应的^208Pb中子皮厚度为0.17—0.28fm.在所有相互作用中,核物质饱和点的对称能与^208Pb的中子皮厚度近似呈线性关系。After adding isospin dependent high order correction terms to existing relativistic mean field models (RMF), the density dependence of symmetry energy and the neutron skin thickness S for 208Pb are studied. Using the new effective interaction PK1, together with NL3, S271 and Z271, a range of 29—38 MeV for the symmetry energy for nuclear matter at saturation point and the corresponding neutron skin thickness S = 0.14—0.28 fm for 208Pb are obtained. For all effective interactions, a linear relation between the symmetry energy at saturation point and the neutron skin thickness for 208Pb is observed.  相似文献   

17.
A phenomenological momentum-independent(MID) model is constructed to describe the equation of state(EOS) for isospin asymmetric nuclear matter,especially the density dependence of the nuclear symmetry energy Esym(ρ).This model can reasonably describe the general properties of the EOS for symmetric nuclear matter and the symmetry energy predicted by both the sophisticated isospin and momentum dependent MDI model and the Skyrme-Hartree-Fock approach.We find that there exists a nicely linear correlation betwee...  相似文献   

18.
在同位旋相关的BHF理论框架内,研究了微观三体核力对非对称核物质状态方程和原子核对称能的影响.结果表明:即使引进了微观三体核力后,核物质结合能随同位旋非对称度的变化关系仍然能够在整个同位旋自由度范围内(0≤β≤1)相当精确地满足二次方规律.在核物质饱和密度ρ0=0.17fm-3处,三体核力对于对称能Esym的影响很小,考虑三体核力后得到的对称能为30.71MeV,与其经验值符合得很好;对于高密度核物质,由于三体核力效应,对称能明显增大,而且三体核力使对称能随密度的增大要比不考虑三体核力情况下的计算结果陡得多.同时还给出了对称能的密度依赖关系的一个简单的参数化形式.  相似文献   

19.
The phase state of dense matter in the intermediate density range (\begin{document}$\sim$\end{document}1-10 times the nuclear saturation density) is both intriguing and unclear and can have important observable effects in the present gravitational wave era of neutron stars. As matter density increases in compact stars, the sound velocity is expected to approach the conformal limit (\begin{document}$c_s/c=1/\sqrt{3}$\end{document}) at high densities and should also fulfill the causality limit (\begin{document}$c_s/c<1$\end{document}). However, its detailed behavior remains a prominent topic of debate. It was suggested that the sound velocity of dense matter could be an important indicator of a deconfinement phase transition, where a particular shape might be expected for its density dependence. In this work, we explore the general properties of the sound velocity and the adiabatic index of dense matter in hybrid stars as well as in neutron stars and quark stars. Various conditions are employed for the hadron-quark phase transition with varying interface tension. We find that the expected behavior of the sound velocity can also be achieved by the nonperturbative properties of the quark phase, in addition to a deconfinement phase transition. Moreover, it leads to a more compact star with a similar mass. We then propose a new class of quark star equation of states, which can be tested by future high-precision radius measurements of pulsar-like objects.  相似文献   

20.
We have investigated the possibility of the presence of the deltas in neutron star matter and their effects on neutron stars. Δ-meson couplings of the theoretical predictions are only restricted in a region where the deltas can be present and even a first-order phase transition may take place, making the EOS sorer and the maximum mass of neutron stars smaller. The presence of the deltas leads to the rapid decrease of neutrino mean free paths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号