首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sonochemical elimination of organic pollutants can take place through two degradation pathways. Molecules with relatively large Henry’s law constants will be incinerated inside the cavitation bubble, while nonvolatile molecules with low Henry’s law constants will be oxidised by the OH ejected from the bubble of cavitation. Taking bisphenol-A as a model pollutant, this study points out an alternate degradation route, mediated by bicarbonate ions, which is significant for the elimination of micro-pollutants at concentrations present in natural waters. In this process, OH radicals react with bicarbonate ions to produce the carbonate radical, which, unlike the OH radical, can migrate towards the bulk of the solution and therefore induce the degradation of the micro-pollutants present in the bulk solution. As a consequence, initial degradation rate is increased by a factor 3.2 at low concentration of bisphenol-A (0.022 μmol l−1) in presence of bicarbonate in water.  相似文献   

2.
The effects of critical factors such as Henry’s Law constant, atmospheric OH rate constant, initial concentration, H2O2, FeSO4 and tert-butanol on the sonochemical degradation of fumaric acid have been investigated. The pseudo first-order rate constant for the sonochemical degradation of 1 mM fumaric acid is much lower than those for chloroform and phenol degradation, and is related to solute concentration at the bubble/water interface and reactivity towards hydroxyl radicals. Furthermore, fumaric acid is preferentially oxidized at the lower initial concentration. It is unreactive to H2O2 under agitation at room temperature. However, the degradation rate of fumaric acid increases with the addition of H2O2 under sonication. 0.1 mM of fumaric acid suppresses H2O2 formation thanks to water sonolysis, while degradation behavior is also dramatically affected by the addition of an oxidative catalyst (FeSO4) or radical scavenger (tert-butanol), indicating that the degradation of fumaric acid is caused by hydroxyl radicals generated during the collapse of high-energy cavities.  相似文献   

3.
《Ultrasonics sonochemistry》2014,21(6):2020-2025
The sonoelectrochemical degradation of triclosan in aqueous solutions with high-frequency ultrasound (850 kHz) and various electrodes was investigated. Diamond coated niobium electrode showed the best results and was used as standard electrode, leading to effective degradation and positive synergistic effect. The influence of different parameters on the degradation degree and energy efficiency were evaluated and favorable reaction conditions were found. It could be shown that 92% of triclosan (1 mg L−1 aqueous solution) was degraded within 15 min, following pseudo-first order kinetics.  相似文献   

4.
The 20 kHz ultrasound-induced degradation of non-steroidal, anti-inflammatory drug diclofenac (DCF) was investigated. Several operating conditions, such as power density (25–100 W/L), substrate concentration (2.5–80 mg/L), initial solution pH (3.5–11), liquid bulk temperature and the type of sparging gas (air, oxygen, argon), were tested concerning their effect on DCF degradation (as assessed measuring absorbance at 276 nm) and hydroxyl radicals generation (as assessed measuring H2O2 concentration). Sample mineralization (in terms of TOC and COD removal), aerobic biodegradability (as assessed by the BOD5/COD ratio) and ecotoxicity to Daphnia magna and Artemia salina were followed too.DCF conversion is enhanced at increased applied power densities and liquid bulk temperatures, acidic conditions and in the presence of dissolved air or oxygen. The reaction rate increases with increasing DCF concentration in the range 2.5–5 mg/L but it remains constant in the range 40–80 mg/L, indicating different kinetic regimes (i.e. first and zero order, respectively). H2O2 production rates in pure water are higher than those in DCF solutions, implying that decomposition basically proceeds through hydroxyl radical reactions. Mineralization is a slow process as reaction by-products are more stable than DCF to total oxidation; nonetheless, they are also more readily biodegradable. Toxicity to D. magna increases during the early stages of the reaction and then decreases progressively upon degradation of reaction by-products; nevertheless, complete toxicity elimination cannot be achieved at the conditions in question. Neither the original nor the treated DCF samples are toxic to A. salina.  相似文献   

5.
Ciprofloxacin (CIPRO) and ibuprofen (IBU), a hydrophilic and a hydrophobic compound, respectively, were degraded by ultrasound at the frequencies of 20 and 620 kHz in aqueous solution containing matrix organic compounds. Compared to in its absence, in the presence of terephthalate (TA), a commonly used OH scavenger, CIPRO degradation was inhibited by a factor of 40–1500 depending on the frequency and initial concentration. However, the degradation rates of IBU were only reduced between 30% and 80% with TA present compared to in its absence. Similar to TA, the presence of Suwannee River Fulvic Acid (SRFA) inhibited CIPRO degradation to a greater extent than that of IBU but overall inhibition by SRFA was dramatically less than by TA. Although both TA and SRFA inhibited the degradation of CIPRO and IBU, the mechanisms of inhibition are different. TA reacts with OH in bulk solution and our evidence also indicates that it accumulates on or interacts with cavitation bubbles. On the other hand, SRFA stays in bulk solution, quenching OH and/or associating with the target compounds.  相似文献   

6.
The present work gives an in depth discussion related to the development of a hybrid advanced oxidation reactor, which can be effectively used for the treatment of various types of water. The reactor is based on the principle of intensifying degradation/disinfection using a combination of hydrodynamic cavitation, acoustic cavitation, ozone injection and electrochemical oxidation/precipitation. Theoretical studies have been presented to highlight the uniform distribution of the cavitational activity and enhanced generation of hydroxyl radicals in the cavitation zone, as well as higher turbulence in the main reactor zone. The combination of these different oxidation technologies have been shown to result in enhanced water treatment ability, which can be attributed to the enhanced generation of hydroxyl radicals, enhanced contact of ozone and contaminants, and the elimination of mass transfer resistances during electrochemical oxidation/precipitation. Compared to the use of individual approaches, the hybrid reactor is expected to intensify the treatment process by 5–20 times, depending on the application in question, which can be confirmed based on the literature illustrations. Also, the use of Ozonix® has been successfully proven while processing recycled fluids at commercial sites on over 750 oil and natural gas wells during hydraulic operations around the United States. The superiority of the hybrid process over conventional chemical treatments in terms of bacteria and scale reduction as well as increased water flowability and better chemical compatibility, which is a key requirement for oil and gas applications, has been established.  相似文献   

7.
The sonochemical degradation of 5 μg l−1 triclosan, a priority micro-pollutant, in various environmental samples (seawater, urban runoff and influent domestic wastewater) as well as in model solutions (pure and saline water) was investigated. Experiments were conducted with a horn-type sonicator operating at 80 kHz frequency and a nominal applied power of 135 W, while solid-phase microextraction coupled with gas chromatography–electron capture detector (SPME/GC–ECD) was employed to monitor triclosan degradation. The latter followed pseudo-first order kinetics with the rate constant being (min−1): 0.2284 for seawater > 0.1051 for 3.5% NaCl in deionised water > 0.0597 for centrifuged urban runoff  0.0523 for untreated urban runoff > 0.0272 for deionised water > 0.0063 for wastewater influent. SPME/GC–ECD and SPME coupled with gas chromatography–mass spectrometry (SPME/GC–MS) were also used to check for the formation of chlorinated and other toxic by-products; at the conditions in question, the presence of such compounds was not confirmed.  相似文献   

8.
In this research, degradation of Rodamine B in the presence of (hydrogen peroxide), (hydrogen peroxide + ultrasound), (hydrogen peroxide + aluminum oxide), (hydrogen peroxide + aluminum oxide + ultrasound with different ultrasound power), (hydrogen peroxide + iron oxide) and (hydrogen peroxide + iron oxide + ultrasound with different ultrasound power) were investigated at 25 °C. The apparent rate constants for the examined systems were calculated by pseudo-first-order kinetics. The results indicate that the rate of degradation was accelerated by ultrasound. The rate of degradation was increased by increasing power ultrasound. The efficiency of the (hydrogen peroxide + iron oxide + ultrasound) system for degradation of Rodamine B was higher than the others examined.  相似文献   

9.
Organic compounds in aqueous solution submitted to an ultrasonic irradiation behave differently according to their physical and chemical properties. In this work, hydrogen peroxide formation and the degradation rate of phenol and carbon tetrachloride have been studied at different frequencies: 20, 200, 500 and 800 kHz. Whatever the frequency, it is easier to decompose CCl4 than phenol by means of ultrasonic wave. It is shown that the rates of reactions involving hydroxyl radicals (hydrogen peroxide formation and phenol degradation) have a maximum value at 200 kHz. The best yield observed at 200 kHz for the phenol degradation may be the result of better HO radicals availability outside of the bubble of cavitation. The degradation rate for carbon tetrachloride which decomposes into the bubble of cavitation increases with frequency. Calculating the reaction rate for one ultrasonic period shows that the efficiency of one ultrasonic cycle decreases as frequency increases.  相似文献   

10.
High-temperature bulk thermolysis of high density polyethylene was performed to obtain degraded polyethylene, which was then left in an oxygen atmosphere for oxidation reaction at 160°C at different oxidation times, yielding a series of polyethylene degradation–oxidation products. Using infrared spectroscopy, chemical titration, gel chromatography, and differential scanning calorimetry, the structural changes of the polyethylene degradation–oxidation products were investigated. Hydroxyl, carboxyl, ester, and other functional groups were introduced into the molecular chains of oxidation products, and the number of carboxyl groups sharply increased with increasing oxidation time. The breaking of molecular chains as well as combination reactions, such as esterfication, during the oxidation process lead to decrease of number-average molecular weight () and increase of both weight-average molecular weight () and molecular weight distribution, and an initial increase and leveling off of the carboxyl number per molecular chain. It is noteworthy that oxidation occurred primarily near weak bonds, mainly terminal vinyl unsaturations. Thus, compared with degraded polyethylene, the oxidation products showed little changes in the melting and crystallization behaviors; even when the oxidation time was up to 4 hr, the drop in the melting and crystallization temperature was less than 3°C. These results might lay a foundation for exploring tailored low molecular weight polymers to be used just as they are or after chemical modifications of olefinic functions.  相似文献   

11.
Highly reactive zero-valent iron (ZVI) nanoparticles stabilized with carboxymethyl cellulose (CMC) were tested for reduction of nitrate in fresh water and brine. Batch kinetic tests showed that the pseudo first-order rate constant (k obs) with the stabilized nanoparticles was five times greater than that for non-stabilized counterparts. The stabilizer not only increased the specific surface area of the nanoparticles, but also increased the reactive particle surface. The allocation between the two reduction products, NH4 + and N2, can be manipulated by varying the ZVI-to-nitrate molar ratio and/or applying a Cu–Pd bimetallic catalyst. Greater CMC-to-ZVI ratios lead to faster nitrate reduction. Application of a 0.05 M HEPES buffer increased the k obs value by 15 times compared to that without pH control. Although the presence of 6% NaCl decreased k obs by 30%, 100% nitrate was transformed within 2 h in the saline water. The technology provides a powerful alternative for treating water with concentrated nitrate such as ion exchange brine.  相似文献   

12.
In this work, the effects of feedstock water leaching on ignition and PM1.0 emission during biomass combustion were studied, for the first time, in a Hencken flat-flame burner reactor (HFFBR). A high-speed video camera and high-resolution electrical low-pressure impactor were respectively employed to diagnose ignition and PM1.0 along the height of the burner. The mineral composition of PM10+ was measured as a function of height to demonstrate the potassium release during the early stage of biomass combustion. The results show that water leaching does not change the functional group of the biomass (straw), but increases the BET surface area and pore volume. Water leaching removes 90% of the potassium and all the chlorine, reducing the same amount of PM1.0 emission. The effect of water leaching on ignition delay observed in the flat-flame burner reactor agrees with the delay of biomass-devolatilization in TGA. Profiles of mineral composition in the PM10+ with height shows that a large amount of the potassium is released before biomass ignition. This indicates that, at realistic heating rates, the catalytic promotion of water-soluble minerals on biomass ignition is primarily through promoting devolatilization. The ignition delay of biomass particles caused by water leaching is more significant at lower temperature, e.g., ignition is delayed from 20 to 24?ms at 1000?°C, and from 9.2 to 10.2?ms at 1300?°C.  相似文献   

13.
This paper reports the effect of water vapour on particulate matter (PM) during the separate combustion of in situ volatiles and char generated from chromated-copper-arsenate-treated (CCAT) wood at 1300 °C. Combustion of in situ volatiles produces only PM with aerodynamic diameter?<1?µm (i.e., PM1), dominantly PM with aerodynamic diameter?<0.1?µm (i.e., PM0.1). Water vapour could significantly enhance the nucleation, coagulation and condensation of fine particles and reduce the capture of Na and K by the alumina reactor tube via reduced formation of alkali aluminates, leading to increases in both yield and modal diameter of PM0.1. Water vapour could also enhance char fragmentation hence increase the yield of PM with aerodynamic diameter between 1 and 10?µm (i.e., PM110) during char combustion. For trace elements, during in situ volatiles combustion, volatile elements (As, Cr, Ni, Cu and Pb) are only presented in PM1 and water vapour alters the particle size distributions (PSDs) but has little effect on the yields of these trace elements. During char combustion, As, Cr, Cu and Ni are present in both PM1 and PM110 while the non-volatile Mn and Ti are only present in PM110. Increasing water vapour content increases the yields of As, Cr, Cu, Ni, Mn and Ti in PM1-10 due to enhanced char fragmentation. During char combustion, water vapour also originates less oxidising conditions locally for enhancing As release, promotes the generation of gaseous chromium oxyhydroxides and inhabits the production of NiCl2 (g), leading to increased yields of As and Cr and decreased yield of Ni in PM0.1.  相似文献   

14.
The photocatalytic activity of silver deposited Degussa P25 titanium dioxide (Ag-DP25) in the photodegradation of methyl orange (MO) was investigated. The photocatalysts were characterized using PXRD, SEM, EDX, FTIR and UV-vis spectrophotometer. The obtained results show that the silver (Ag0) deposited TiO2 exhibited visible light plasmon absorption band. The degradation experiment reveals that the catalytic property of Ag-DP25 in the degradation of MO is more efficient than that of commercially available Degussa P25 TiO2 (DP25) samples. The improvement of Ag-DP25 catalyst efficiency strongly depends on the content of silver (Ag) deposits. The present study shows that the degradation process is dominated by Ag-TiO2 photocatalytic system, complying with pseudo-first order rate law. The higher rate of photodegradation observed on Ag-DP25 at pH 6.6 can be correlated to the ratios of the concentrations of the ionized to the neutral dye molecules and also to the higher concentration of hydroxylated surface, which are able to effectively scavenge photogenerated valence band holes. Accumulation of the holes in the semiconductor particles increases the probability of formation of excited oxygen atom which is a reactive species readily oxidizing the organic dye molecule. The reduction of pH during the course of the reaction is attributed to the complete mineralization of the dye.  相似文献   

15.
16.
Excitation functions of reaction products formed in16O +66Zn and37Cl +45Sc systems, leading to the same compound nucleus,82Sr, were measured using recoil-catcher technique and off-line γ-ray spectrometry. The contribution of non-compound processes like transfer and incomplete fusion (ICF) reactions to the cross-sections of different evaporation residues were delineated by comparing the experimental data with the predictions of Monte Carlo simulation code PACE2. The results show that non-compound processes become a significant fraction of the total reaction cross-section in16O +66 systems in the beam energy range studied, while37Cl +45Sc gives mainly compound nucleus products. The mass asymmetry dependence of the fusion and non-compound cross-sections have been analysed in terms of the static fusion model and sum rule model  相似文献   

17.
In 1990, Van Den Enden et al. proposed a method for the determination of water droplet size distributions in emulsions using a pulsed-field-gradient nuclear magnetic resonance (PFG-NMR) T1-weighted stimulated-echo technique. This paper describes both the T1-weighted spin-echo sequence, an improved method based on this earlier work, and, the standard PFG spin-echo sequence. These two methods were compared for water self-diffusion coefficient measurement in the fatty protein concentrate sample used as a 'cheese model.' The transversal and longitudinal relaxation parameters T1 and T2 were determined according to the temperature and investigated for each sample; fat-free protein concentrate sample, pure anhydrous milk fat, and fatty protein concentrate sample. The water self-diffusion in fat-free protein concentrate samples followed a linear behavior. Consequently, the water self-diffusion coefficient could be easily characterized for fat-free protein concentrate samples. However, it seemed more complicated to obtain accurate water self-diffusion in fatty protein concentrate samples since the diffusion-attenuation data were fitted by a bi-exponential function. This paper demonstrates that the implementation of the T1-weighted spin-echo sequence, using the different T1 properties of water and fat phases, allows the accurate determination of water self-diffusion coefficient in a food product. To minimize the contribution of the 1H nuclei in the fat phase on the NMR echo signal, the fat protons were selectively eliminated by an additional 180 degrees pulse. This new method reduces the standard errors of diffusion data obtained with a basic spin-echo technique, by a factor of 10. The effectiveness of the use of the T1-weighted spin-echo sequence to perform accurate water self-diffusion coefficients measurement in fatty products is thus demonstrated.  相似文献   

18.
Photocatalytic experiment results under visible light demonstrate that both TiO2 and Cu2O have low activity for brilliant red X-3B degradation and neither can produce H2 from water splitting. In comparison, TiO2/Cu2O composite can do the both efficiently. Further investigation shows that the formation of Ti3+ under visible light has great contribution. The mechanism of photocatalytic reaction is proposed based on energy band theory and experimental results. The photogenerated electrons from Cu2O were captured by Ti4+ ions in TiO2 and Ti4+ ions were further reduced to Ti3+ ions. Thus, the photogenerated electrons were stored in Ti3+ ions as the form of energy. These electrons trapped in Ti3+ can be released if a suitable electron acceptor is present. So, the electrons can be transferred to the interface between the composite and solution to participate in photocatalytic reaction. XPS spectra of TiO2/Cu2O composite before and after visible light irradiation were carried out and provided evidence for the presence of Ti3+. The image of high-resolution transmission electron microscopy demonstrates that TiO2 combines with Cu2O tightly. So, the photogenerated electrons can be transferred from Cu2O to TiO2.  相似文献   

19.
20.
Rovibrational matrix elements of the multiple moments Q l up to rank 10 and of the linear polarizability of the H2 molecule in the condensed phase have been computed taking into account the effect of the intermolecular potential. Comparison with gas phase matrix elements shows that the effect of solid state interactions is marginal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号