首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
Synthesis of SAPO-34 nanocrystals which has been recently considered as a challenging task was successfully performed by sonochemical method using TEAOH as structure directing agent (SDA). The products were characterized by XRD, SEM, EDX, BET and TGA. The average crystal size of the final product prepared sonochemically is 50 nm that is much smaller than that of synthesized under hydrothermal condition and the morphology of the crystals changes from uniform spherical nanoparticles to spherical aggregates of cube type SAPO-34 crystals respectively. In the case of sample synthesized sonochemically with aid of hydrothermal condition, the surface area is significantly upper than that of obtained by the conventional static hydrothermal technology with almost the same crystallinity. SAPO-34 framework synthesized by just ultrasonic treatment is unstable and a significant part of SAPO-34 nanocrystals is transformed to the dense phase of AlPO4 structure, i.e., Cristobalite. Contrary to hydrothermal method that at least 24 h of the synthesis time is required to obtain fully crystalline SAPO-34, sonochemical-assisted hydrothermal synthesis of samples leads to form fully crystalline SAPO-34 crystals taking only 1.5 h. In a sonochemical process, a huge density of energy for crystallization is provided by the collapse of bubbles which formed by ultrasonic waves. The fact that small SONO-SAPO-34 crystals could be prepared by the sonochemical method suggests a high nucleation density in the early stages of synthesis and slow crystal growth after nucleation.  相似文献   

2.
原位漫反射红外光谱研究SAPO-34分子筛的吸附性能   总被引:4,自引:1,他引:3  
采用漫反射红外光谱原位考察了298-773K范围H2O,NH3和NO在SAPO-34分子筛上的吸附行为结果表明,SAPO-34对水的吸附是可逆的,对NH3和NO的吸附则是不可逆的。吸附水在623K完全脱附,脱水后的分子筛在3625-3600cm^-1出现表征桥式羟基(Si-OH-Al)的特征峰。发现SAPO-34对NH3和NO均有良好的吸附-催化活性。吸附NH3后,桥式羟基消失,位于3135,3032和1399cm^-1处在423K时出现三个吸收峰,在673K达最大,且峰高分别是SAPO-34骨架峰高的3.9,1.7和6.7倍;吸附NO后,在室温下位于1364cm^-1也观测到一强而尖锐的峰,其强度与骨架峰强度相当。对这些峰进行归属表明,吸附NH3和NO后产生了新的物种NO3^-。  相似文献   

3.
The influence of ultrasound-assisted rapid hydrothermal synthesis of aluminosilicate ZSM-5 catalysts was examined in this work. A series of MFI-type nanostructured materials with sonochemical approach and conventional heating were synthesized and evaluated for conversion of methanol to propylene reaction. The prepared samples were tested by characterization analyses such as XRD, FESEM, BET-BJH, FTIR, TPD-NH3 and TG/DTG. The obtained results confirmed that ultrasound treatment enhanced the nucleation process and crystal growth for ZSM-5 sample synthesized at moderate temperature of 250 °C. Therefore, it was found the formation of pure MFI zeolite with high crystallinity and improved textural, structural and acidic properties for ZSM-5(UH-250) sample compared with the other zeolites. This observation was attributed to the relationship between the perfect crystallization mechanism and catalytic properties, which led to producing an efficient MFI zeolite toward the optimal catalytic performance. In this manner, the methanol conversion and products selectivity of prepared materials were carried out in MTP reaction at 460 °C and atmospheric pressure. The ZSM-5(UH-250) zeolite with slower deactivation regime exhibited the constant level of methanol conversion (84%) and high propylene selectivity (78%) after 2100 min time on stream. Moreover, the synthesis pathway for MFI zeolite at moderate temperature and also deactivation mechanism of improved sample were proposed.  相似文献   

4.
This study aims principally to assess numerically the impact of methanol mass transport (i.e., evaporation/condensation across the acoustic bubble wall) on the thermodynamics and chemical effects (methanol conversion, hydrogen and oxygenated reactive species production) of acoustic cavitation in sono-irradiated aqueous solution. This effect was revealed at various ultrasound frequencies (from 213 to 1000 kHz) and acoustic intensities (1 and 2 W/cm2) over a range of methanol concentrations (from 0 to 100%, v/v). It was found that the impact of methanol concentration on the expansion and compression ratios, bubble temperature, CH3OH conversion and the molar productions inside the bubble is frequency dependent (either with or without consideration of methanol mass transport), where this effect is more pronounced when the ultrasound frequency is decreased. Alternatively, the decrease in acoustic intensity decreases clearly the effect of methanol mass transport on the bubble sono-activity. When methanol mass transfer is eliminated, the decrease of the bubble temperature, CH3OH conversion and the molar yield of the bubble with the rise of methanol concentration was found to be more amortized as the wave frequency is reduced from 1 MHz to 213 kHz, compared to the case when the mass transport of methanol is taken into account. Our findings indicate clearly the importance of incorporating the evaporation and condensation mechanisms of methanol throughout the numerical simulations of a single bubble dynamics and chemical activity.  相似文献   

5.
6.
Unlike reverse osmosis (RO) that is dominated by the hydraulic pressure differential, forward osmosis (FO) uses the osmotic pressure gradient as the driving force between a dilute feed solution and a concentrated draw solution across a membrane. High pressure is not required in FO, which means that FO can be used as an alternative to RO as an energy-saving separation process in desalination technology. However, a major limiting factor of the FO process is the internal concentration polarization (ICP). Because of the stagnant environment inside the porous supporting layer of a FO membrane, it is difficult to mitigate the ICP by simply increasing the shear stress or promoting turbulence. In this study, the ICP is reduced by ultrasound. The effect of the ultrasound frequency and output power on the ICP coefficient is investigated in a flat-sheet FO membrane module with counter-current flow. The ultrasound frequency and output power are varied between 25, 45, and 72 kHz and over the range of 10–70 W, respectively. NaCl solution is used as both the feed and draw solution. The results illustrate that moderate ultrasonic irradiation is effective for reducing the ICP in a FO process. A modified solution–diffusion model based on film theory is used to assess the effect of ultrasound on the ICP in a FO process. The ICP coefficient is estimated using this model.  相似文献   

7.
ε-caprolactam (CL) polymerization to polyamide-6 (Nylon 6) was studied at different contents of water in CL (0.01–2 wt%), with or without ε-amino-caproic acid (ACA) as an activator, applying to the mixture an initial treatment of Ultrasound (US) (17.5–20 kHz) at low temperatures (70–110 °C) and for short times (max 10 min). It was verified that polymerization at 260 °C produces a polymer having a much higher molecular weight (MW) when US is applied with respect to silent (SIL) conditions i.e. without the use of ultrasound. This constitutes a “pre-sonication effect”. The ratio (MW)US/(MW)SIL is inversely proportional to the initial content of water in CL. The action of US converts CL at very low temperatures (70–110 °C) and water content, in comparison with silent conditions where CL was unconverted.

Optimized conditions are studied with respect to nature and pressure of gas inside the reactor, temperature, time and frequency of US irradiation, energy consumption and nature of activator.  相似文献   


8.
In this work, a magnetic bio-metal–organic framework (MBMOF) nanocomposite with porous-layer open morphology is synthesized through a simple sonochemical approach and its effects on Leishmania major (MRHO/IR/75/ER) under both in vitro and in vivo conditions are investigated. The effects of sonication time, initial concentration of reagents and sonication power on size and morphology of MBMOF nanocomposites have been investigated and optimized. A comparison was then made between the structural information of the nanostructures and that of the bio-metal–organic framework crystals. Using the powder X-ray diffraction (PXRD), field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), energy dispersive analysis of X-ray (EDAX), vibrating sample magnetometer (VSM), thermogravimetric analysis (TGA), and Brunauer-Emmet-Teller (BET) techniques, the prepared MBMOF nanocomposites were characterized. The mean numbers of promastigotes (cell/ml) in different MBMOF concentrations (3.12, 6.25, 12.5, 25, 50, 100, 200 and 400 µg mL−1) were determined by direct counting after 24, 48 and 72 h. Using MTT assays, the cytotoxic impacts of the MBMOF nanocomposites on promastigotes, intracellular amastigotes, and J774 macrophages were estimated. In order to investigate their therapeutic effects, the prepared MBMOF nanocomposites (25 and 12.5 µg mL−1) were used as ointment three times a week to treat Leishmania major in BALB/c mice. The lesion size and weight of mice were assessed before and during the treatment. The parasitic loads were measured in spleen and liver through the culture. After 72 h, the INF-γ and IL-4 cytokines levels in the supernatant of the spleen culture were measured. To the best of the authors’ knowledge, this study is the first to attempt to synthesize the bio-MOFs through an in-situ sonosynthesis route under ultrasound irradiation and examine their cytotoxicity effects on Leishmania major under in vitro and in vivo conditions.  相似文献   

9.
In organic and inorganic synthesis and in analytical methods, an external conventional heat source is usually applied to carry out a chemical reaction at a high temperature, or an extraction procedure. In the last decades, the use of ultrasound as an alternative energy source has become an interesting field of research in these topics in the South Cone region (Argentina, Chile, Uruguay, Southern Brazil and Paraguay). For this reason, the present review, covering the period 2009 to mid-2021, is a compilation of ultrasound-assisted synthetic and analytical methodologies.  相似文献   

10.
Ultrasound (US) “pre-sonication effect” is the beneficial effect of US in the hydrolytic polymerization of ε-caprolactam (CL) mixtures with very low water concentrations (about 0.1–1 wt%). It appears after a mild initial treatment of the mixtures with US [17.5–20 kHz, short times (5–15 min), low temperatures (70–110 °C)] followed by heating at 220–260 °C. An explanation is proposed on the basis of the formation in mild conditions (100 °C) of low concentrations of cyclic oligomers never detected in the literature at those conditions. These, under US irradiation, produce linear amino acid oligomers, which are strong activators of polymerization when the mixture of CL and water, after US irradiation, is heated at the suitable polymerization temperature indicated above.  相似文献   

11.
12.
Highly crystalline metal oxide nanoparticles of TiO2, WO3, and V2O5 were synthesized in just a few minutes by reacting transition metal chloride with benzyl alcohol using ultrasonic irradiation under argon atmosphere in a non-aqueous solvent. The sonochemical process was conducted at a relatively low temperature, 363 K. A unique crystallization process of these nanoparticles has been observed and characterized by powder X-ray diffraction (PXRD), high resolution scanning electron microscopy (HRSEM), and BET. The particles’ size and shape measured from HRSEM reveal “quasi” zero-dimensional, spherical TiO2 particles in the range of 3–7 nm. The V2O5 particles have a “quasi” one-dimensional ellipsoidal morphology, with lengths in the range of 150–200 nm and widths varying between 40 and 60 nm. The WO3 particles were obtained as “quasi” two-dimensional platelets with square shapes having facets ranging from 30 to 50 nm. The thickness of these platelets was between 2 and 7 nm. The mechanism of the reactions leading to these three metal oxide nanoparticles in a non-aqueous system is substantiated by Nuclear Magnetic Resonance (NMR), and Electron Spin Resonance (ESR).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号