首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
快速精准的诊断和高效的治疗对于减轻眼部疾病造成的危害至关重要. 在过去的几十年里, 由于具有尺寸小、 比表面积大、 表面易修饰及独特的光/电子/机械性能等优点, 纳米材料已被用于构建不同种类的高性能纳米探针. 其中, 基于其良好的生物相容性, 科学家们已经将硅纳米材料设计为可用于不同眼部疾病诊断与治疗的功能化纳米探针. 本综述主要概述了将硅基纳米探针用于检测和治疗不同眼部疾病(如角膜疾病、 视网膜疾病、 青光眼等)的近期研究进展. 首先, 重点介绍了硅基纳米探针的设计制备及在角膜新生血管、 细菌性角膜炎等角膜疾病的成像检测与治疗中的应用; 然后, 介绍了用于成像检测和治疗视网膜疾病(如色素性视网膜炎和视网膜新生血管)的硅基持续性给药系统的研究成果; 随后, 概述了多功能硅基纳米载药系统的构建及在青光眼治疗领域的应用研究进展; 最后, 简要讨论了将硅基纳米探针用于眼部疾病诊治面临的挑战并对未来的发展前景进行了展望.  相似文献   

2.
The electrochemical performances of lithium-ion batteries(LIBs) are closely related to the interphase between the electrode materials and electrolytes. However, the development of lithium-ion batteries is hampered by the formation of uncontrollable solid electrolyte interphase(SEI) and subsequent potential safety issues associated with dendritic formation and cell short-circuits during cycling. Fabricating artificial SEI layer can be one promising approach to solve the above issues. This review summarizes the principles and methods of fabricating artificial SEI for three types of main anodes:deposition-type(e.g., Li), intercalation-type(e.g., graphite) and alloy-type(e.g., Si, Al). The review elucidates recent progress and discusses possible methods for constructing stable artificial SEIs composed of salts, polymers, oxides, and nanomaterials that simultaneously passivate anode against side reactions with electrolytes and regulate Li+ ions transport at interfaces. Moreover, the reaction mechanism of artificial SEIs was briefly analyzed, and the research prospect was also discussed.  相似文献   

3.
Owing to its excellent biological properties, peptide has been widely used in the design of nanoprobes capable of enhancing tumor imaging signals. In recent years, a number of peptide-based nanoprobes with strong loading capacity and great biocompatibility have been developed for precision tumor imaging by coupling peptide motifs with different imaging agents. It is worth noting that, compared with "always on" mode, the use of stimulus-mediated in situ activatable mode to design and control the self-assembly or nanostructure transformation of peptide-based nanoprobes in vivo can achieve the significant improvement of imaging efficiency. Herein, we summarize the recent progress of in situ activatable peptide-based nanoprobes for tumor imaging in diverse imaging modes, including magnetic resonance imaging(MRI), fluorescence imaging(FI), photoacoustic imaging(PAI), radionuclide imaging(RI) and multimodal imaging. Finally, we briefly prospect the challenges and potential development directions of this field.  相似文献   

4.
Polymer science entails the structural study at multi-levels from nano-to micro-and mesoscale,which is highly important to transfer or even amplify the molecular information to macroscopic materials.Multiple polymer structural transitions from lower-order to higher-order superstructures are normally involved to achieve selective,efficient and sophisticated functions.Therefore,in-situ visualization of these processes is highly important,not only for fundamental understanding the structural evolution,but also for the optimization of the process flow during the materials processing.Fluorescence imaging based on aggregation-induced emission(AIE)provides an ideal tool that offers a simple,accurate,and easy-readable method to fulfill the above requirements.Owing to the twisted propeller-like structure of AIE luminogens(AIEgens),they show high fluorescence sensitivity to the surrounding microenvironment(e.g.,viscosity,rigidity,and polarity)through intramolecular motions.In this short review,we summarize the recent applications of AIEgens to serve as“built-in”sensors to analyze the process of polymerization,microphase separation,glass/vitrification transition,polymer solvation,crystallization,etc.The perspective on the future application of AIE technology in polymer engineering,especially fiber materials,is also discussed.  相似文献   

5.
外泌体是具有各种关键生物活性分子(如脂质、 蛋白质和核酸)的细胞外囊泡. 它们可以由所有类型的细胞分泌, 并分布在所有生物流体中, 如血液、 唾液、 汗水和尿液等. 更重要的是, 外泌体可以参与多种生理活动, 包括细胞间通讯、 哺乳动物的繁殖和免疫反应, 并在新陈代谢以及心血管疾病、 神经变性和癌症等疾病的病理进展中起重要作用, 这使其成为备受关注的天然非侵入性生物标记物, 并且被认为是可用于临床诊断和治疗的潜在工具。本文综述了用于检测外泌体的生物传感器的最新发展, 包括荧光、 电化学、 电化学发光、 表面增强拉曼光谱、 比色法和微流控技术等分析方法; 总结了在临床诊断和疾病治疗中外泌体的临床应用; 还讨论了外泌体检测所面临的挑战以及外泌体在临床诊断和疾病治疗等方面的应用潜力.  相似文献   

6.
Patients with spinal cord injury(SCI) are suffering disability and accompanying complications. Due to the complex biological processes and inhibitory microenvironment after SCI, advances in clinical treatment show obvious limitations for achieving a successful repair. Herein, we summarize recent advances in engineering strategies of using electrospun nanofibers to promote the neural regeneration and functional recovery after SCI. We firstly introduce the pathological mechanism of SCI and thus point out the challenges on the regeneration of the nerve. We then discuss the regenerative approaches by combining electrospun nanofibrous scaffolds with physical cues, biochemical cues(e.g., cells, growth factors and other biomolecules), external stimuli, and supporting materials filling in the inner lumen of the scaffolds. All these strategies have indicated their potentials to enhance the efficacy of repairing the SCI. At last, we provide a perspective on the future direction for designing the electrospun nanofibrous scaffolds in combination with imaging systems to realize the in-situ monitoring of regeneration progress for further improving the treatment outcome.  相似文献   

7.
石墨烯基催化剂的设计合成与电催化应用   总被引:2,自引:1,他引:1  
为了解决能源匮乏和环境污染的问题,研究人员正致力于寻找清洁可持续的新能源。 其中,氧气还原、氧气析出、析氢反应等是紧密联系新型清洁能源获取和存贮的重要电化学反应。 为了提高其能量转化效率,电催化剂(如碳载铂Pt/C)被广泛地用于降低其反应活化能、提高能量转化效率。 近年来,石墨烯作为一种具有高比表面积和优异导电性的二维碳材料受到了广泛关注。 通过表面杂原子掺杂、缺陷调控和引入催化活性组分等方式,获得了催化性能与贵金属催化剂相媲美,且低价格和高稳定性的非贵金属石墨烯基催化材料。 针对氧气还原、氧气析出和析氢反应在燃料电池、金属-空气电池和电催化水分解中的应用,本文概括综述了通过表/界面结构性质调控提高石墨烯电催化性能和稳定性,获得具有双功能或复合催化性能的石墨烯基催化剂的最新研究进展。 最后总结和展望了亟待解决的问题及未来的发展趋势。  相似文献   

8.
With the development of science and technology, PEGylated nanoprobes have attracted a great deal of interest in the molecular imaging area of modern medicine. These nanoprobes play an important role especially in diagnosis of gastric diseases. The transition metal oxides as gastric contrast agents based on PEGylated WO3?x nanoprobes were designed in this work. The nanoprobes were developed via a high-temperature solvent thermal method, and then modified with polyethylene glycol (PEG) to improve stability and dispersivity of nanoprobes in water. The characterizations of PEGylated WO3?x nanoprobes included scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy analysis etc. Moreover, in vivo toxicological studies were carried out with histopathology. Otherwise, as a contrast agent, multi-slice computed tomography (MDCT) imaging were illustrated both in vitro and in vivo assessment. The results indicated that PEGylated WO3?x nanoprobes had great potential for gastric MDCT imaging in detection of gastric diseases.  相似文献   

9.
Modin R  Schill G 《Talanta》1975,22(12):1017-1022
Selective and easily regulated systems for extraction of organic compounds as ion-pairs and/or adducts are presented. The effect of different kinds of hydrophobic agents that give adducts in the organic phase are demonstrated: mesitylene for nitrophenols, ethyl acetate and diethyl ether for hexestrol (diphenol), lipophilic alcohols for organic ammonium ion-pairs, dibenzo-18-crown-6 for ion-pairs of primary ammonium ions, HDEHP for hydrophilic aminophenols (adrenaline, isoproterenol, synephrine). It is shown that the extraction selectivity decreases with increasing content of the complexing agent in the adduct. The influence of the hydrogen-bonding character of the counter-ion and the organic solvent on the selectivity of ion-pair extractions is demonstrated with ammonium compounds (nortriptyline, amitriptyline and N-methylainitriptyline) and inorganic anions. Highly hydrophilic anionic compounds (e.g., glucuronides, cholic acid derivatives) can be extracted into chloroform as ion-pairs with large quaternary alkylammonium ions. The extraction efficiency of the cation increases with the number of methylene groups to a limit which is due to co-extraction of other sample components (e.g., buffer anions).  相似文献   

10.
将功能分子共价链接于硅纳米线表面,是发展硅纳米线性能,获得新的硅纳米线器件材料的重要手段.但是对硅纳米线表面的修饰却存在产生不可控制的表面氧化层的缺点,因此有必要发展一种温和的新方法.本文通过羟基(—OH)与硅纳米线表面Si—H键反应生成Si—O—C键,从而在硅纳米线表面引入功能分子.并通过芘醇分子在硅纳米线表面的固定化,证明了这一方法能够温和地实现对硅纳米线表面的共价键修饰.  相似文献   

11.
In vivo imaging is creating great opportunities for disease diagnosis as a research tool. Probes are usually used to observe physiological structures in vivo clearly. Recent progresses of nanoprobes are important for the generation of high resolution and high contrast images required by accurate and precision disease diagnosis. In vivo self-assembled peptide(SAP) nanoprobes are playing major roles in in vivo imaging by modularity of design, high imaging contrast, response to the location of the lesion, and long-time retention in the lesion. And the response to lesion and long-term retention in there can enhance imaging sensitivity and specificity of in vivo SAP nanoprobes. Therefore, in vivo SAP nanoprobes are simple ancillary contrast entities to optimize the imaging effect. In this review, the recent progress of in vivo SAP nanoprobes for in vivo imaging, from molecular design of peptides to biomedical and clinical applications including disease diagnosis and disease-related molecular imaging is systematically summarized. We evaluate their ability, including sensitivity and specificity to provide relevant information under preoperative and during surgery circumstances and critically their likelihood to be clinically translated. Finally, a brief outlook on remaining challenges and potential directions for future research in this area is presented.  相似文献   

12.
除传统的催化、 吸附分离和离子交换外, 主客体组装化学赋予了沸石分子筛材料独特的物理化学性质和广阔的应用前景. 本文聚焦光致发光沸石分子筛复合材料, 综述了这类材料最新的研究进展, 总结了不同发光客体, 如稀土金属、 金属簇、 量子点/碳点等与沸石分子筛形成的复合材料的制备方法与组装策略, 介绍了该类复合材料的光致发光性质和潜在应用, 探究了复合材料中可能存在的量子限域、 分子间相互作用、 能量转移和电子转移等对发光的影响, 并对未来光致发光沸石分子筛复合材料的发展前景进行了展望.  相似文献   

13.
The synthesis and gelation properties of a series of organogelators containing a benzohydrazide unit and two alkoxy chains(oBn) were reported herein. oBn(n=8, 10, 12) could form stable gels in commercial fuels(e.g., diesel), which were characterized by low critical gelation concentrations(CGCs) and good mechanical properties (G'>105 Pa). The gelation process was further studied by field-emission scanning electron microscopy(FE-SEM), Fourier transform infrared spectroscopy(FTIR) and X-ray diffraction(XRD), etc. It was demonstrated that in these organogels, molecules self-assembled into fibrils 3D-network, where hydrogen bonding, van der Waals force and π-π interaction were confirmed as the driving forces. As compounds oBn(n=8, 10, 12) show very good gelation properties in diesel, their applications in oil spill treatment have also been tested. It was found that oBn could achieve rapid (<30 s) and effective oil removal at room temperature, being good candidates for oil spill treatment in the future. Also, the removal efficiency could be as high as 95%.  相似文献   

14.
Metal nanoprobes have recently attracted board research interestinr their application in establishing sensing systems due to their unique optical, electrical, physical, and chemical properties. In comparison to gold and silver nanoprobes, analytical platform based on copper nanoprobes (Cu‐NPs) is still in the early stages of development. In this review, we focus on single‐stranded, and double‐stranded DNA capped Cu‐NPs sensing systems which have been designed for various analytes, including metal ions, anions, small molecules, biomolecules (DNA, RNA, and protein, etc.). In addition, the application of Cu‐NPs in biological labeling or bio‐imaging platforms has also been introduced and summarized.  相似文献   

15.
Environmental problems caused by the development of nanotechnology have threatened human health. Investigating the biomedical effects of nanomaterials can help to solve these environmental safety issues. In studies on the biomedical effects of nanomaterials, several types of novel nanoscale probes that allow reliable, sensitive, accurate and rapid biomedical detection have emerged. We summarize recent developments in three categories of these nanoprobes, including noble metal nanocluster probes, carbon-based nanostructured probes, and unnatural amino acid-based probes. Besides reviewing the utility of different nanoprobes in cell imaging and protein detection, we also discuss the molecular mechanism of nanoprobe detection. Perspectives of novel nanoprobe design based on molecular details of biomedical detection are presented.  相似文献   

16.
Nucleic acid probes in living organisms play an essential role in therapeutics and diagnosis.Through the imaging and sensing of nucleic acid probes in complex biological matrices,a variety of diseases-related biological process,pathogenic process,or pharmacological responses to a therapeutic intervention have been discovered.However,a critical challenge of nucleic acid probes applied in complex matrices lies in enhancing the stability of nucleic acid probes,especially when it suffers from nuclease degradation and protein adsorption.In order to enhance the application of nucleic acid nanoprobes in complex matrices,great efforts have been devoted to improving the stability of probes operated in complex media,including construction of nucleic acid nanoprobes with nuclease resistance and protein adsorption resistance,sample pretreatment,anti-biofouling and signal correction.In this review,we aim to summarize recent advances in the stability of nucleic acid nanoprobes in complex matrices,including the methods of enhancing the stability of probes or signals,and the application of nucleic acid nanoprobes for disease diagnosis.  相似文献   

17.
pH稳态对于维持活细胞细胞器的正常功能具有重要作用.细胞器内pH稳态被打破会导致细胞器功能的紊乱,进而引发癌症、神经退行性疾病等相关疾病.因此,在活细胞水平上定量测定pH并对其波动进行实时监测对于理解相关疾病的发生机制非常重要.基于非侵入、高时空分辨率成像的优势,荧光探针非常适合用于活细胞内pH的检测.本综述总结了近些年利用不同种类荧光纳米探针对不同细胞器进行pH成像的研究工作,并对荧光纳米探针应用面临的机遇与挑战进行了展望.  相似文献   

18.
结合磁共振成像(MRI)和荧光成像技术,以钆离子(Gd3+)、量子点及精氨酸(R)-甘氨酸(G)-天冬氨酸(D)(RGD)多肽等为功能单元,采用纳米载体组装技术构建了MRI弛豫率/荧光效率高和靶向性强的Gd3+与RGD共修饰的量子点双模态纳米探针(QDs@Gd3+-RGD),并将其用于胰腺癌细胞的双模态成像.实验结果表明,QDs@Gd3+-RGD双模态纳米探针具有较高的弛豫率,且能对胰腺癌patu8988细胞进行荧光和T1-weighted MR成像.  相似文献   

19.
长余辉纳米材料具有独特的发光性质, 能在激发光关闭后持续发光. 通过收集激发光关闭后的长余辉发光信号可以有效消除背景信号的干扰. 此外, 长余辉材料在成像时无需原位激发, 可以减少生物体系的组织自发荧光和光散射干扰, 提高生物成像和检测的灵敏度. 由于这种独特的光学特性, 长余辉纳米材料在生物传感/生物成像以及疾病治疗等领域被广泛应用. 近年来, 为满足疾病相关生物标志物的体外检测及体内生物成像的应用要求, 控制合成发光性能优异、 生物相容性好的长余辉纳米材料成为研究热点.  相似文献   

20.
朱琳  傅青云 《广州化学》2014,39(4):65-72
综述了新型金属纳米材料Au25纳米团簇的合成机理和合成工艺改进,结合Au纳米团簇荧光作用机理说明其特有的荧光特性,利用Au纳米团簇荧光性质在离子检测、生物小分子检测、蛋白质检测和生物成像方面的应用,为Au纳米团簇的研究提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号