首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The efficiency of 1H-1,2,4-triazol-3-amine (Tz1), 4-amino-3-hydrazino-4H-1,2,4-triazole-3-thiol (Tz2), and 1H-1,2,4-triazole-3,5-diamine (Tz3) as inhibitors of corrosion of copper in nitric acid was investigated by use of density functional theory (DFT). Quantum chemical data, for example energy of the highest occupied molecular orbital (E HOMO), energy of the lowest unoccupied molecular orbital (E LUMO), energy gap (ΔE), dipole moment (μ), electronegativity (χ), electron affinity (A), global hardness (η), softness (σ), ionization potential (I), fraction of electrons transferred from the inhibitor molecules to the metallic atom (ΔN), and total energy (TE), were calculated. All calculations were performed by use of DFT with Gaussian 03W software. A good correlation was found between theoretical data and experimental results.  相似文献   

2.
Corrosion inhibition efficiencies of 1,4-dihydroquinoxaline-2,3-dione (Q1) and 2-phenylthieno[2,3-b]quinoxaline (Q2) as corrosion inhibitors against the corrosion of steel surface in hydrochloric acid is studied by means of density functional approach B3LYP/6-31G calculations. Quantum chemical parameters such as highest occupied molecular orbital energy (E HOMO), lowest unoccupied molecular orbital energy (E LUMO), energy gap (ΔE), dipole moment (μ), electronegativity (χ), electron affinity (A), global hardness (η), softness (σ), ionization potential (I), the fraction of electrons transferred (?N), the global electrophilicity ω, and the total energy were calculated. All calculations have been performed by considering density functional theory using the GAUSSIAN03W suite of programs.  相似文献   

3.
Methyl 2-(bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)amino) acetate, BT36, and methyl 2-(bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)amino)-3-(1H-indol-3-yl)propanoate, BT 43, have been synthesized. Investigation by weight-loss measurement and use of electrochemical techniques revealed the compounds are very effective inhibitors of corrosion of C38 steel in 1 M HCl solutions—percentage protection exceeded 95 % for BT43 at concentrations as low as 10?2 M. An impedance study in the absence and presence of these compounds revealed the mechanism of protection was cathodic inhibition by polarization and charge-transfer. The Langmuir adsorption isotherm was obeyed. Quantum chemical data calculated by use of DFT at the B3LYP/6-31G* level of theory revealed a good correlation between inhibition efficiency and the molecular structure of BT36 and BT43. The highest occupied molecular orbital, the lowest unoccupied molecular orbital, the separation energy (ΔE), and the dipole moment (μ) from the inhibitor to the metal surface explain the experimental data well.  相似文献   

4.
Density functional theory at the B3LYP/6-31G(d,p) basis set level was performed on three thiadiazolines, namely 4-chloro-N-(5-phenyl-1,3,4-thiadiazol-2(3H)-ylidene)aniline (TD01), 4-chloro-N-(5-(4-methoxyphenyl)-1,3,4-thiadiazol-2(3H)-ylidene)aniline (TD02), and 2-(5-(4-chlorophenylimino)-4,5-dihydro-1,3,4-thiadiazol-2-yl) phenol (TD03), and the inhibitive effect of these thiadiazolines against the corrosion of mild steel in acidic medium is elucidated. The calculated quantum chemical parameters correlated to the inhibition efficiency are EHOMO (highest occupied molecular orbital energy), ELUMO (lowest unoccupied molecular orbital energy), the energy gap (ΔE) hardness (η), softness (S), dipole moment (μ), electron affinity (EA) ionization potential (IE), the absolute electro negativity (χ), and the fraction of electron transferred (ΔN). The decreasing order of %IE of the thiadiazolines studied was found to be in agreement with experimental corrosion inhibition efficiencies. The local reactivity has been analyzed through the condensed Fukui function and local softness indices using population analysis.  相似文献   

5.
In this study, we report substituent effect on aryl group migration in (para-C6H4X)Mn(CO)5 complexes using mpw1pw91 quantum chemical calculations. These calculations reveal good linear relationships between barrier energy (ΔE), activation energy (ΔH?), activation free energy (ΔG?) values and rate constants with Hammett constants of X-substituents. The occupancy values of Mn–COcis and Mn–C(O)-(para-C6H4X) bonds in reactant, transition state and product were calculated by Natural bond orbital (NBO) method.  相似文献   

6.
7.
Density functional theory (DFT) at the B3LYP/6‐31G (d,p) and BP86/CEP‐31G* basis set levels and ab initio calculations using the RHF/6‐31G (d,p) methods were performed on four sulfonamides (namely sulfaacetamide (SAM), sulfapyridine (SPY), sulfamerazine (SMR), and sulfathiazole (STI)) used as corrosion inhibitors for mild steel in acidic medium to determine the relationship between molecular structure and their inhibition efficiencies (%IE). The order of inhibition efficiency obtained was SMR > SPY > STI > SAM which corresponded with the order of most of the calculated quantum chemical parameters namely EHOMO (highest occupied molecular orbital energy), ELUMO (lowest unoccupied molecular orbital energy), the energy gap (ΔE), the Mulliken charges on the C, O, N, S atoms, hardness (η), softness (S), polarizability (α), dipole moment (μ), total energy change (ΔET), electrophilicity (ω), electron affinity (A), ionization potential (I), the absolute electronegativity (χ), and the fraction of electrons transferred (ΔN). Quantitative structure activity relationship (QSAR) approach has been used and a correlation of the composite index of some of the quantum chemical parameters was performed to characterize the inhibition performance of the sulfonamides studied. The results showed that the %IE of the sulfonamides was closely related to some of the quantum chemical parameters but with varying degrees/order. The calculated %IE of the sulfonamides studied was found to be close to their experimental corrosion inhibition efficiencies. The experimental data obtained fits the Langmuir adsorption isotherm. The negative sign of the EHOMO values and other thermodynamic parameters obtained indicates that the data obtained supports physical adsorption mechanism. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

8.
《印度化学会志》2023,100(6):101018
A theoretical investigation of the corrosion inhibition effectiveness of 1-[4-acetyl-2-(4-chlorophenyl) quinoxalin-1(4H)-yl] acetone (Q1), 2-(4-(2-ethoxy-2-oxoethyl)-2-p-tolylquinoxalin-1(4H)-yl) acetate (Q2) and 2-(4-methylphenyl)-1,4-dihydroquinoxaline (Q3) was evaluated by using quantum chemical parameters from density functional theory (DFT) with 6–311++ G (d, p) basis set at B3LYP level. Several quantum chemical parameters were determined to evaluate the array of selected molecules such as (ELUMO), energy gap (ΔE), (EHOMO), hardness, ionization potential, electronegativity, dipole moment (μ), the fraction of the electrons transferred from the inhibitor to the metal surface (ΔN), the softness (σ) and the total energy (TE). Theoretical data were found to confirm experimental results. By using these different quantitative chemical parameters to determine corrosion inhibition efficiency, we compare the results of the recent corrosion investigation of these inhibitors.  相似文献   

9.
Abstract

Zn(II) and Ni(II) complexes of 5-fluoroisatin-3-[-(N-cyclohexylthiosemicarbazone)] (H2FIC) have been prepared and characterized structurally by means of elemental analyses, FTIR, electronic, and 1H NMR spectra. The theoretical wavenumbers, IR intensities, and molecular parameters have been calculated by the ab-initio Hartree–Fock (HF) method with the LanL2DZ basis set. The theoretical wavenumbers show a good agreement with experimental data. The bond lengths, bond angles, the highest occupied molecular orbital energy (EHOMO), the lowest unoccupied molecular orbital energy (ELUMO), the energy gap between EHOMO and ELUMO (ΔEHOMO-LUMO), dipole moment, and charges on the atoms of H2FIC as monomer form were studied by the density functional theory/Becke-3-Lee-Yang-Parr (DFT/B3LYP) and ab-initio HF methods using 6-31G(d,p) basis set. The trimeric possible structure of H2FIC was also investigated using HF method. The observed IR wavenumbers of the H2FIC were analyzed in the light of the computed vibrational spectra of its monomer and trimer forms.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   

10.
11.
12.
13.
14.
Topological analyses of the electron density on N-benzoyl-L-pheylalanine and its palladium(II) complexes are carried out using the quantum theory of atoms in molecules (QTAIM) at the M06/6-31G(d) theoretical level. The topological parameters derived from the Bader theory are also analyzed; these are characteristics of Pd bond critical points and ring critical points. The calculated structural parameters are the highest occupied molecular orbital energy (E HOMO), the lowest unoccupied molecular orbital energy (E LUMO), the hardness (η), the softness (S), the absolute electronegativity (χ), the electrophilicity index (ω), and the fractions of electrons transferred (ΔN) from ethylenediamine, 2,2′-bipyridine and 1,10-phenanthroline complexes to N-benzoyl-L-pheylalanine. The numerous correlations and dependences between the energy terms of the symmetry adapted perturbation theory approach, geometrical, topological, and energy parameters are detected and described.  相似文献   

15.
Synthesis of 5-aryl-N-(pyrazin-2-yl)thiophene-2-carboxamides (4a–4n) by a Suzuki cross-coupling reaction of 5-bromo-N-(pyrazin-2-yl)thiophene-2-carboxamide (3) with various aryl/heteroaryl boronic acids/pinacol esters was observed in this article. The intermediate compound 3 was prepared by condensation of pyrazin-2-amine (1) with 5-bromothiophene-2-carboxylic acid (2) mediated by TiCl4. The target pyrazine analogs (4a–4n) were confirmed by NMR and mass spectrometry. In DFT calculation of target molecules, several reactivity parameters like FMOs (EHOMO, ELUMO), HOMO–LUMO energy gap, electron affinity (A), ionization energy (I), electrophilicity index (ω), chemical softness (σ) and chemical hardness (η) were considered and discussed. Effect of various substituents was observed on values of the HOMO–LUMO energy gap and hyperpolarizability. The p-electronic delocalization extended over pyrazine, benzene and thiophene was examined in studying the NLO behavior. The chemical shifts of 1H NMR of all the synthesized compounds 4a–4n were calculated and compared with the experimental values.  相似文献   

16.
The modified statistical theory developed previously for potentials appropriate to interactions in neutral-neutral collisions, is now extended to more strongly attractive potentials involved in ion-neutral collisions. The model system is the collisional deactivation of C5H9+ by a variety of both polar and non-polar neutral molecules. A 12 - 6 - 4 potential is used for ion interaction with non-polar neutrals, and a 12 - 6 - 4 - 2 potential, as modified by Su and Bowers to take into account the rotational energy of the neutral, for interaction with polar neutrals. Calculated is (ΔE), the average energy lost by the ion in a collision, and compared with experiment. For C5H9+-CH4 collisions, the calculated (ΔE) agrees with experiment within 5%. Predictions of the theory, namely that (ΔE) should increase with excitation energy and should decrease with the size of the excited reactant, are found to be in fair agreement with the somewhat ambiguous experimental evidence.  相似文献   

17.
This work reports results from potentiodynamic polarisation and impedance investigation, with a rotating disc electrode, of inhibition of corrosion of A106 steel in aerated, unstirred 3.0 % NaCl solutions using di-n-butyl bis(thiophene-2-carboxylato-O,O′)tin(IV) as inhibitor. These studies showed that it is a mixed-type inhibitor. Inhibition efficiency increased with increasing di-n-butyl bis(thiophene-2-carboxylato-O,O′)tin(IV) concentration and decreases with increasing solution temperature. Maximum efficiency of inhibition of the inhibitor of approximately 78 % is observed at a concentration at 10?2 M. The inhibition process was attributed to formation of an adsorbed film on the metal surface that protects the metal against corrosive agents. The adsorption isotherm confirms the applicability of Langmuir equation to describe the adsorption process. Thermodynamic functions for the adsorption process were determined. The efficiency of corrosion inhibitors and global chemical reactivity depend on such properties as energy of the highest occupied molecular orbital (E HOMO), energy of the lowest unoccupied molecular orbital (E LUMO), energy gap (ΔE), which were calculated. All calculation was been performed by density functional theory (DFT) using the Gaussian03W suite of software. Calculated results were usually in agreement with the experimental data.  相似文献   

18.
19.
In this study, quantum chemical calculations of geometric parameters, conformational, natural bond orbital (NBO) and nonlinear optical (NLO) properties, vibrational frequencies, 1H and 13C NMR chemical shifts of the title molecule [C9H7F5N2O3] in the ground state have been calculated with the help of Density Functional Theory (DFT-B3LYP/6-311++G(d,p)) and Hartree-Fock (HF/6-311++G(d,p)) methods. The optimized geometric parameters, vibrational frequencies, 1H and 13C NMR chemical shifts values are compared with experimental values of the investigated molecules. Comparison between experimental and theoretical results showed that B3LYP/6-311++G(d,p) method is able to provide more satisfactory results. In order to understand this phenomenon in the context of molecular orbital picture, we examined the molecular frontier orbital energies (HOMO, HOMO-1, LUMO, and LUMO + 1), the energy difference (ΔE) between E HOMO and E LUMO, electronegativity (χ), hardness (η), softness (S) calculated by HF/6-311++G(d,p) and B3LYP/6-311++G(d,p) levels. The molecular surfaces, Mulliken, NBO, and Atomic polar tensor (APT) charges of the investigated molecule have also been calculated by using the same methods.  相似文献   

20.
Two aza-analogues of distyrylbenzene namely: 1,4-bis[β-(4-quinolyl)vinyl]benzene (PhQ) and 1,4-bis[β-(4-pyridyl)vinyl]benzene (PhPy) containing arachno-decaborane or arachno-nonaborane clusters have been isolated: 6,9-(PhQ)2-arachno-B10H12 (1), N,N′-bis[9-Me2S-arachno-B10H12-6-yl]PhQ (2), 6,9-(PhPy)2-arachno-B10H12 (3), N,N′-bis[(9-Me2S)-arachno-B10H12-6-yl]PhPy (4), N,N′-bis[arachno-B9H13-4-yl]PhQ (5), 4-PhQ-arachno-B9H13 (6), N,N′-bis[arachno-B9H13-4-yl]PhPy (7), and 4-PhPy-arachno-B9H13 (8). These boronated compounds were easily prepared from the displacement reactions of weaker ligand (SMe2) of bis (dimethyl sulfide) arachno-decaborane(14) {6,9-(Me)2SB10H12}or dimethyl sulfide-arachno-nonaborane {4-(Me)2SB9H13} by the stronger bidentate ligands of PhQ or PhPy in ratio (1:2). The electronic interaction between decaborane or nonaborane arachno-type unit and the bonded pyridine units has been investigated by UV-Vis spectroscopy and by AM1 molecular orbital calculations. The resulting compounds undergo trans-cis photoisomerization upon excitation. The connection of boron clusters to PhQ and PhPy led to enhancing of the photoreactivity and decreasing of the fluorescence quantum yield of the products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号