首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study utilizes atomic force microscopy and electrostatic force microscopy to investigate the orientation of overcrowded aromatics in films with submonolayer coverage. The results demonstrate that the side chains in the molecules can be used as a tool to control the molecular order and orientation in thin films. For molecules that do not self-associate well, the interaction with the substrate dominates, and the molecules orient with their aromatic planes parallel to the surface. These monolayers have measurable polar order. For molecules that self-associate well, the opposite orientation is observed. These films are comprised of isolated stacks of molecules parallel to the surface.  相似文献   

2.
The growth process and phase state of 5,5'-bis(3'-fluoro-biphenyl-4-yl)-2,2'?:?5',2'- terthiophene (m-F2BP3T) thin films were investigated by atomic force microscopy (AFM), in-plane and out-of-plane X-ray diffraction (XRD), and selected area electron diffraction (SAED). Two meso-phases (thin film phases) of m-F2BP3T films on SiO(2) surface were obtained in the early stages. The m-F2BP3T films initially exhibited two-dimensional (2D) layers (≤4 ML) followed by three-dimensional (3D) island growth. The film structure evolved two thin film phases in the first four layers and the bulk phase was formed from the fifth layer, which occurred concomitantly with the change of the growth mode. Moreover, the variation of weak epitaxy growth behavior of ZnPc from 2D to 3D growth further reflects that the phase state of the first three layers is different from that of the fourth layer, in spite of ZnPc crystals showing just one orientation corresponding to commensurate epitaxy. The novel phase behavior is closely related to the synergistic effects of the outstanding soft matter properties, limited elasticity of organic molecules, and strain originating from the SiO(2) substrate. This study investigates novel phase behavior in organic thin films and provides significant insight into the mechanism of the phase transition.  相似文献   

3.
The polymer surface relaxation in thin films has been a long debating issue.We report a new method on studying surface relaxation behaviors of polymer thin films on a solid substrate.This method involved utilizing a rubbed polyimide surface with a pretilting angle in a liquid crystalline cell.Due to the surface alignment,the liquid crystals were aligned along the rubbing direction.During heating the liquid crystalline cell,we continuously monitored the change of orientation of the liquid crystals.It is u...  相似文献   

4.
用匀胶机通过溶液铸膜方法在硅片和铝箔基板上分别制备具有不同厚度的聚(ε-己内酯)(PCL)薄膜. 通过原子力显微镜(AFM)和偏光衰减全反射傅里叶红外光谱(ATR-FTIR)对薄膜中PCL的结晶形貌、 片晶生长方式及分子链取向进行了研究. AFM结果表明, 在200 nm或更厚的薄膜中, PCL主要以侧立(edge-on)片晶的方式生长; 对于厚度小于200 nm的薄膜, PCL片晶更倾向于以平躺(flat-on)的方式生长. 这种片晶生长方式的改变在硅片和铝箔基板上都表现出同样的倾向. 此外, 在15 nm或更薄的薄膜中, PCL结晶由通常的球晶结构变为树枝状晶体. 偏光ATR-FTIR结果表明, 当膜厚小于200 nm时, 薄膜结晶中PCL分子链沿垂直于基板表面方向取向, 并且膜越薄, 取向程度越高, 与AFM的观测结果一致.  相似文献   

5.
Weak epitaxy growth (WEG) can afford high-mobility thin films of disk-like organic semiconductor of which mobility is up to the level of the corresponding single crystals. We investigated the WEG behavior and mechanism of planar phthalocyanine in the model system of metal-free phthalocyanine (H2Pc) grown on p-sexiphenyl (p-6P) ultrathin films (monolayers and double layers). Highly oriented H2Pc films with molecules standing up exhibited two kinds of different in-plane orientations, i.e., three sets of in-plane orientations and only one set of in-plane orientation, on p-6P monolayer and double-layer films, respectively. The surface geometrical channels of p-6P substrate dominated the oriented nucleation and growth of H2Pc film. Consequently, the H2Pc film showed incommensurate and commensurate epitaxy on p-6P ultrathin films.  相似文献   

6.
Highly C‐axis oriented ZnO thin film was manufactured by radio‐frequency magnetron sputtering technique on Si (111) substrate. The main objective was to study the influence of rapid thermal annealing (RTA) temperature on the structure and interfacial characteristic of ZnO thin films. X‐ray diffraction results showed that the ZnO thin films annealed at 600 °C by RTA technique had a perfect C‐axis preferred orientation compared to the other ZnO thin films, and the full width at half maximum of ZnO (002) rocking curve measurements indicted that the RTA‐annealed ZnO thin films possessed better crystal structure. Atom force microscopy displayed that the grain size of RTA‐annealed ZnO thin films was fine and uniform compared with the as‐deposited ZnO thin films, although the grains grew in RTA process and the root meant square roughness was smaller than that of as‐deposited films. High‐resolution transmission electron microscopy showed that there was an obvious amorphous layer between ZnO thin films and Si substrate, but the RTA‐annealed ZnO thin films exhibited larger and denser columnar structure and a preferred orientation with highly c axis perpendicular to the amorphous layer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The degree of crystallinity, the structure and orientation of crystallites, and the morphology of thin pentacene films grown by vapor deposition in an ultrahigh vacuum environment on polycrystalline copper substrates have been investigated by x-ray diffraction and tapping-mode scanning force microscopy (TM-SFM). Depending on the substrate temperature during deposition, very different results are obtained: While at 77 K a long-range order is missing, the films become crystalline at elevated temperatures. From a high-resolution x-ray-diffraction profile analysis, the volume-weighted size of the crystallites perpendicular to the film surface could be determined. This size of the crystallites increases strongly upon changing temperature between room temperature and 333 K, at which point the size of individual crystallites typically exceeds 100 nm. In this temperature region, three different polymorphs are identified. The vast majority of crystallites have a fiber texture with the (001) net planes parallel to the substrate. In this geometry, the molecules are oriented standing up on the substrate (end-on arrangement). This alignment is remarkably different from that on single-crystalline metal surfaces, indicating that the growth is not epitaxial. Additionally, TM-SFM images show needlelike structures which suggest the presence of at least one additional orientation of crystallites (flat-on or edge-on). These results indicate that properties of thin crystalline pentacene films prepared on technologically relevant polycrystalline metal substrates for fast electronic applications may be compromised by the simultaneous presence of different local molecular aggregation states at all temperatures.  相似文献   

8.
Regarding the molecular orientation on flat substrates, thin films have been studied of a series of wedge-shaped molecules (3,4,5-tris-substituted benzoate-benzo crown ether compounds) consisting of a hydrophobic outer rim and a polar group at the thin end which form columnar mesomorphic and crystalline structures. For most substrates studied here, autophobic dewetting is demonstrated to be caused by the formation of a monomolecular adlayer in which the molecules are oriented normal to the substrate surface with the hydrophobic tails directed away from the substrate. For thick films, this adlayer is shown to cause an "in-plane" orientation of the axis of the columnar state. An ordered in-plane oriented adlayer is observed only for highly ordered pyrolytic graphite as the substrate. In this case, specific interactions with the substrate cause formation of a well-ordered 2D pattern that might favor homeotropic orientation of the columnar structures but has to be optimized by further structural variation. The structure of the adsorbed monolayer is elucidated by combining contact angle measurements, plasmon resonance spectroscopy, and optical and scanning tunneling microscopy.  相似文献   

9.
Orientation of the lamellar microdomains in thin films of three symmetric polystyrene-b-poly(ethylene-co-butylene) block copolymers (S65E155, S156E358, and S199E452) on mica was investigated via atomic force microscopy (AFM), grazing incidence X-ray diffraction (GIXRD) and X-ray photoelectron spectroscopy (XPS). The results show that lamellar orientation in the SxEy block copolymers greatly depends on the molar mass of the block copolymers, the temperature of solvent evaporation, and annealing. The nascent thin film of the low molar mass block copolymer, S65E155, shows a multilayered structure parallel to the mica surface with the PS block at both polymer/mica and polymer/air interfaces, but the high molar mass block copolymers, S156E358 and S199E452, exhibit a structure with lamellar microdomains perpendicular to the mica surface. When the solvent is evaporated at a lower temperature, the crystallization rate is fast and a two-dimensional spherulite structure with the lamellar microdomains perpendicular to the mica surface is observed. Annealing of all the thin films with lamellar microdomains perpendicular to the mica surface leads to morphological transformation into a multilayered structure parallel to the mica surface. In all SxEy thin films on mica, the stems of PE crystals are always perpendicular to the interface between the lamellar PE and PS microdomains. A mechanism is proposed for the formation of different microdomain orientations in the thin films of semicrystalline block copolymers. When the thin film is prepared from a homogeneous solution, microdomains perpendicular to the substrate surface are formed rapidly for strongly segregated block copolymers or at a lower crystallization temperature and kinetically trapped by the strong segregation strength or solidification of crystallization, while for weakly segregated block copolymers or at slower crystallization rate, the orientation of the microdomains is dominated by surface selectivity.  相似文献   

10.
I. Lelidis  C.   edman 《Liquid crystals》2003,30(6):643-649
We report some preliminary results on the morphology of thin N,N -dimethyl- n -octadecyl-3-aminopropyltrimethoxysilyl chloride (DMOAP) films. When deposited on a glass substrate, DMOAP forms a mono- or multi-layer structure parallel to the substrate. The surface topography of the film is probed by atomic force microscopy. In general, the free surface of such a film is not flat and smooth. Islands and holes are formed on the free surface of the films when a sufficiently flat substrate is used. The thin film surface topography depends strongly on the nature of the bare substrate, the curing conditions, and the immersion time of the substrate in the DMOAP solution. The film is always rougher than the bare substrate used. Annealing roughens the surface of the alkoxysilane thin films deposited on a glass substrate. For films on glass plates covered with an indium tin oxide layer, annealing has minor effects. The surface topography affects the microstructure of homeotropic smectic samples.  相似文献   

11.
The molecular chain and lamellar crystal orientation in ultrathin films (thickness < 100 nm) of poly-(di-n-hexylsilane) (PDHS) on silicon wafer substrates have been investigated by using transmission electronic microscopy, wide-angle X-ray diffraction, atomic force microscopy, and UV absorption spectroscopy. PDHS showed a film thickness-dependent molecular chain and lamellar crystal orientation. Lamellar crystals grew preferentially in flat-on orientation in the monolayer ultrathin films of PDHS, i.e., the silicon backbones were oriented along the surface-normal direction. By contrast, the orientation of lamellar crystals was preferentially edge-on in ultrathin films thicker than ca. 13 nm, i.e., the silicon backbones were oriented parallel to the substrate surface. We interpret the different orientations of molecular chain and lamellar crystal as due to the reduction of the entropy of the polymer chain near the substrate surface and the particularity of the crystallographic (001) plane of flat-on lamellae, respectively. A remarkable influence of the orientations of the silicon backbone on the UV absorption of these PDHS ultrathin films was observed due to the one-dimensional nature of sigma-electrons delocalized along the silicon backbone. With the silicon backbones perpendicular or parallel to the surface of the substrate, the UV absorbance increased or decreased with an increase of the angle between the incident UV beam direction and direction normal to the thin film, respectively.  相似文献   

12.
通过溶胶-凝胶工艺, 采用两步加热法在聚酰亚胺表面制备了具有c轴取向的ZnO薄膜. 通过差式扫描量热-热重分析(DSC-TGA)得出最佳的前热处理温度和后热处理温度分别为300和390 ℃. 通过X射线衍射(XRD)和扫描电子显微镜(SEM)对薄膜的晶体取向和表面形貌进行了分析, 描述了ZnO薄膜在聚酰亚胺上的生长过程. 拉伸实验结果表明, ZnO薄膜与聚酰亚胺衬底有较强的附着力.  相似文献   

13.
The growth of copper phthalocyanine thin films evaporated on polycrystalline gold is examined in detail using near edge x-ray absorption fine structure spectroscopy and surface sensitive x-ray photoemission spectroscopy. The combination of both methods allows distinguishing between the uppermost layers and buried interface layers in films up to approximately 3 nm thickness. An interfacial layer of approximately 3 ML of molecules with an orientation parallel to the substrate surface was found, whereas the subsequent molecules are perpendicular to the metal surface. It was shown that even if the preferred molecular orientation in thin films is perpendicular, the buried interfacial layer can be oriented differently.  相似文献   

14.
Recently we have combined infrared spectroscopy and atomic resolution scanning tunneling microscopy (STM) to probe the local structure and intermolecular arrangement of molecules within thin films. IR spectroscopy provides spatially averaged information about orientation of the molecules with respect to the surface and about intermolecular arrangement within the crystallographic unit cell. STM data yields a local picture of molecular packing within the film. The requirements of an atomically flat (over distances of hundreds of angstroms) conducting substrate for the STM are fulfilled by an epitaxially grown film of gold on a cleaved mica substrate which also provides a good infrared reflective surface, enabling IR and STM measurements on identical samples. Systems investigated include Langmuir-Blodgett films of cadmium arachidate and self-assembled films of octadecyltrichlorosilane.  相似文献   

15.
A complex orientational morphology is observed when n-alkane thin films are vapor deposited on highly oriented pyrolytic graphite surfaces. Substrate temperature can be used to tune the orientation and morphology of n-alkane thin films. The molecular orientation changes from lateral to normal to the surface when the substrate temperature is raised sufficiently. Under specific substrate temperature conditions, the n-alkane molecules are aligned in the plane of the sample surface, in directions reflecting the 6-fold symmetry of the graphite substrate. A series of different morphologies, from uniform thin films to oriented bars, are observed as a function of chain length and substrate temperature. The systematic evolution of these oriented morphologies is mapped as a function of deposition conditions, and the kinetic and thermodynamic factors that govern the formation of different in-plane and normal domains are considered.  相似文献   

16.
We report some preliminary results on the morphology of thin N,N -dimethyl-n-octadecyl-3-aminopropyltrimethoxysilyl chloride (DMOAP) films. When deposited on a glass substrate, DMOAP forms a mono- or multi-layer structure parallel to the substrate. The surface topography of the film is probed by atomic force microscopy. In general, the free surface of such a film is not flat and smooth. Islands and holes are formed on the free surface of the films when a sufficiently flat substrate is used. The thin film surface topography depends strongly on the nature of the bare substrate, the curing conditions, and the immersion time of the substrate in the DMOAP solution. The film is always rougher than the bare substrate used. Annealing roughens the surface of the alkoxysilane thin films deposited on a glass substrate. For films on glass plates covered with an indium tin oxide layer, annealing has minor effects. The surface topography affects the microstructure of homeotropic smectic samples.  相似文献   

17.
The influence of substrate temperature, process gas, deposition pressure, and substrate type on the phase selection, orientation/epitaxy, and growth morphology of thin films in the SrNbOy (y≈3.0 or 3.5) family was investigated. Pulsed laser deposited films (from a Sr2Nb2O7 target) obtained in both oxygen and nitrogen atmospheres upon various substrates were characterized with X-ray diffraction, energy dispersive spectroscopy, atomic force microscopy, and transmission electron microscopy. In oxygen atmospheres, films adopted the (110)-layered perovskite structure of the target. Higher temperatures, lower pressures of oxygen, and use of (110)-oriented SrTiO3 substrates lead to highly crystalline, epitaxial films of Sr2Nb2O7. The use of nitrogen atmospheres resulted in cubic perovskite SrNbO3 formation: epitaxial, textured, or polycrystalline films were obtained depending on the substrate; no nitrogen incorporation could be observed on the anion sublattice. On SrTiO3, the cubic perovskite films followed a cube-on-cube epitaxy and planar defects were observed to occur on the (110) perovskite planes.  相似文献   

18.
Nanocrystalline aluminum nitride (AlN) thin films were deposited on two types of metallic seed layers on silicon substrates, (111) textured Pt and (110) Mo, by reactive DC magnetron sputtering at low temperature (200 °C). Both textured films of Pt and Mo promote nucleation, thereby improving the crystallinity and epitaxial growth condition for AlN thin films. The deposited films were examined by X‐ray diffraction, scanning electron microscopy and atomic force microscopy techniques. The results indicated that the preferred orientation of crystallites greatly depends upon the kinetic energy of the sputtered species (target power) and seed layers used. Furthermore, AlN thin films with c‐axis perpendicular to the substrate grew on both types of metal electrodes at all power levels larger than 100 W. By comparing the structural properties and compressive stresses at perfect c‐axis orientation conditions, it is evident that AlN films deposited on (110) oriented Mo substrates exhibited superior properties as compared with Pt/Ti seed layers. Furthermore, less values of compressive stresses (?3 GPa) as compared with Pt/Ti substrates (?7.08 GPa) make Mo preferentially better candidate to be employed in the field of suspended Micro/Nano ‐ electromechanical systems (MEMS/NEMS) for piezoelectric devices. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
以正硅酸乙酯(TEOS)为硅源, 四丙基氢氧化铵(TPAOH)为模板剂, 通过调变合成silicalite-1分子筛溶胶组成及反应时间等合成参数, 用原位水热晶化法在玻璃基底上制备了表面平整、连续性好且高度b取向的silicalite-1分子筛膜. 研究了溶胶组成及基底表面粗糙度与分子筛膜中晶体取向的关系, 讨论了晶化条件对分子筛膜厚度及膜中微晶尺寸及分布的影响, 实现了silicalite-1 沸石分子筛在基底表面的高度取向生长和膜中晶体大小及膜层微结构的调控. 本文描述的制备方法简单且重复性好. 此外, 还利用扫描电子显微镜(SEM)和X射线衍射(XRD)等分析方法对样品进行了表征.  相似文献   

20.
应用真空蒸发法在泡沫铜基底上制备锡薄膜负极.XRD、SEM分析表征薄膜的物相结构及其微观形貌,并测试了材料的电化学性能.结果表明,泡沫铜基底的三维结构增强了活性物质与基底的结合力.在同一基底温度下,锡颗粒随蒸发时间延长逐渐增大,电池电化学性能降低;而在同一时间内,升高基底温度,颗粒无明显变化,电池循环寿命有了很大提高.样品A″电池(基底温度:200℃,蒸发时间:0.5 h)经100次充放电循环后比容量仍达407.3 mAh·g-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号