首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The paper presents a rapid method for the determination of dioxopromethazine hydrochloride (DPZ), an antihistamine drug, by the capillary electrophoresis with electrochemiluminescene detection (CE–ECL) using tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) reagent. This CE–ECL detection method has high sensitivity, good selectivity and reproducibility for DPZ analysis. Under the optimized conditions: separation capillary, 38 cm length (25 μm i.d.); sample injection, 10 s at 8 kV; separation voltage, 12.5 kV; running buffer, 20 mmol L−1 sodium phosphate of pH 6.0; detection potential, 1.15 V; 50 mmol L−1 of phosphate buffer (pH 7.14) containing 5 mmol L−1 of Ru(bpy)32+ in ECL detection cell, the detection limit of DPZ was 0.05 μmol L−1 (S/N = 3). The linear range extended from 5 to 100 μmol L−1. The linear curve obtained was Y = 181.62 + 9.28X with a correlation coefficient of 0.9970. The relative standard deviations of the ECL intensity and the migration time for six continuous injections of 5 μmol L−1 DPZ were 3.7% and 0.92%, respectively. The CE–ECL method was applied to analyze DPZ in real samples including tablets, rat serum and human urine, and satisfactory results were obtained without interference from samples matrix. The CE–ECL technique was proved to be a potential method for the detection of DPZ in clinic analysis.  相似文献   

2.
Chi Y  Xie J  Chen G 《Talanta》2006,68(5):1544-1549
The electrochemiluminescent (ECL) response of allopurinol was studied in aqueous media over a wide pH range (pH 2–13) using flow injection (FI) analysis. It was revealed that allopurinol itself had no ECL activity, but could greatly enhance the ECL of Ru(bpy)32+ in alkaline media giving rise to a sensitive FI-ECL response. The effects of experimental conditions including the mode of applied voltage signal, the potential of working electrode, pH value, the flow rate of carrier solution, and the concentration of Ru(bpy)32+ and allopurinol on the ECL intensity were investigated in detail. The most sensitive FI-ECL response of allopurinol was found at pH 12.0, where the FIA-ECL intensity showed a linear relationship with concentration of allopurinol in the range 1 × 10−8 mol L−1 to 5 × 10−7 mol L−1, and the detection limit was 5 × 10−9 mol L−1.  相似文献   

3.
Fenoterol and salbutamol were determined by electrogenerated chemiluminescence (ECL) coupled with flow injection analysis (FIA), using Ru(bpy)32+ as the luminescent substance. Fenoterol and salbutamol oxidize together with the ruthenium 2,2-bipyridyl at a platinum electrode, which leads to an increase in the luminescent intensity, and this increase is proportional to the analyte concentration. For fenoterol a linear calibration curve within the range from 1.0 × 10−5 to 1.0 × 10−4 mol l−1 was obtained with a correlation coefficient of 0.998 (n = 5) and for salbutamol the linear analytical curve was also obtained in this range with a correlation coefficient of 0.995 (n = 5). The relative standard deviation was estimated as ≤2.5% for 3 × 10−5 mol l−1 for fenoterol solution and as ≤1.3% for 5.0 × 10−5 mol l−1 salbutamol solution for 15 successive injections. The limit of detection for fenoterol was 2.4 × 10−7 mol l−1 and for salbutamol was 4.0 × 10−7 mol l−1. Fenoterol and salbutamol were successfully determined in drug tablets and the soluble components of the matrix did not interfere in the luminescent emission. The results obtained using the luminescent methodology were not statistically different from those obtained by UV-spectrophotometry at 95% confidence level.  相似文献   

4.
The electrogenerated chemiluminescence (ECL) of the Ru(bpy)32+ (bpy, 2,2′-bipyridine)/tri-n-propylamine (TPrA) system can be produced at an oxidation-potential well before the oxidation of Ru(bpy)32+. Here, we describe the unique features of the low-oxidation-potential (LOP) ECL. The LOP ECL exhibited strong dependence on solution pH with the maximum emission at pH  7.7. Compared with the conventional ECL, the LOP ECL was much more significantly diminished at high pH (>10), probably due to the short lifetime of TPrA cation radical which is a crucial intermediate for the LOP emission. It was also found that the preceding deprotonation step played an important role in TPrA oxidation at neutral pH and would remarkably influence the emission intensity. As excess intermediate radicals were produced upon rapid TPrA oxidation, only 5 mM TPrA was needed to achieve the maximum LOP ECL intensity in detecting trace Ru(bpy)32+ (<1 μM) and the LOP ECL response to Ru(bpy)32+ concentration was linear. Compared with the conventional Ru(bpy)32+/TPrA ECL, the LOP ECL technique not only produces higher emission intensity at lower oxidation-potential, but also significantly reduces the amount of the coreactant.  相似文献   

5.
Wu X  Huang F  Duan J  Chen G 《Talanta》2005,65(5):1279-1285
Melatonin and some of its important derivatives were found to be able to enhance the ECL of Ru(bpy)32+ in an alkaline Britton–Robinson buffer solution. The optimum conditions for the enhanced ECL, such as the selection of applied potential mode, type of buffer solution, pH effect and effect of Ru(bpy)32+ concentration have been investigated in detail in this paper. Under the optimum conditions, the enhanced ECL is linear with the concentration of melatonin and its derivatives over the wide range, and the detection limit for these compounds was found to be in the range of 5.0 × 10−8 to 1.0 × 10−10 mol L−1. The proposed procedure was applied for the determination of drug in tablets with recoveries of 85–93%. A possible mechanism for the enhanced ECL of Ru(bpy)32+ by melatonin and its derivatives was proposed, and the relationship between molecular structure of melatonin and its derivatives and the enhanced ECL behavior was also discussed.  相似文献   

6.
Matos RC  Coelho EO  Souza CF  Guedes FA  Matos MA 《Talanta》2006,69(5):1208-1214
The importance of atmospheric hydrogen peroxide (H2O2) in the oxidation of SO2 and other compounds has been well established. A spectrophotometric method for the determination of hydrogen peroxide in rainwater is proposed. This method is based on selective oxidation of hydrogen peroxide using an on-line tubular reactor containing peroxidase immobilized on Amberlite IRA-743 resin. The hydrogen peroxide in the presence of phenol, 4-aminoantipyrine and peroxidase, produces a red compound (λ = 505 nm). Beer's law is obeyed in a concentration range of 1–100 μmol l−1 hydrogen peroxide with an excellent correlation coefficient (r = 0.9991), at pH 7.0, with a relative standard deviation (R.S.D.) <2%. The detection limit of the method is 0.7 μmol l−1 (4.8 ng of H2O2 in a 200 μl sample). Measurements of hydrogen peroxide in rain samples were carried out over the period from November 2003 to January 2005, in the central area of the Juiz de Fora city, Brazil. The concentration of H2O2 varied from values lower than the detection limit to 92.5 μmol l−1. The effects of the presence of nonseasalt (NSS) SO42−, NO3 and H+ in the concentration of hydrogen peroxide in the rainwater had been evaluated. The average concentrations of H2O2, NO3, NSS SO42− and SO42− are 23.4, 18.9, 7.9 and 10.3 μmol l−1, respectively. The pH values for 82% of the collected samples are greater than 5.0. The spectrophotometeric method developed in this work that uses enzyme immobilized on the resin ion-exchange compared with the amperometric method did not present any significant difference in the results.  相似文献   

7.
Li Liu  Jun-feng Song  Peng-fei Yu  Bin Cui 《Talanta》2007,71(5):1842-1848
A novel voltammetric method for the determination of β-d-glucose (GO) is proposed based on the reduction of Cu(II) ion in Cu(II)(NH3)42+–GO complex at lanthanum(III) hydroxide nanowires (LNWs) modified carbon paste electrode (LNWs/CPE). In 0.1 mol L−1 NH3·H2O–NH4Cl (pH 9.8) buffer containing 5.0 × 10−5 mol L−1 Cu(II) ion, the sensitive reduction peak of Cu(II)(NH3)42+–GO complex was observed at −0.17 V (versus, SCE), which was mainly ascribed to both the increase of efficient electrode surface and the selective coordination of La(III) in LNW to GO. The increment of peak current obtained by deducting the reduction peak current of the Cu(II) ion from that of the Cu(II)(NH3)42+–GO complex was rectilinear with GO concentration in the range of 8.0 × 10−7 to 2.0 × 10−5 mol L−1, with a detection limit of 3.5 × 10−7 mol L−1. A 500-fold of sucrose and amylam, 100-fold of ascorbic acid, 120-fold of uric acid as well as gluconic acid did not interfere with 1.0 × 10−5 mol L−1 GO determination.  相似文献   

8.
The proposed method for cyanide determination at the ultratrace level by differential pulse voltammetry is based in the sensitivity enhancement obtained when both Cu(II) and EDTA are present in the background electrolyte. Comparison of the detection limits and linear dynamic ranges using the conventional borate (pH 9.75), and the proposed borate-EDTA–Cu(II) background electrolytes was carried out. Best results have been obtained with the addition of 0.5 mmol l−1 EDTA and 0.02 mmol l−1 of Cu(II), which allow a detection limit of 1.7 μg l−1 CN (65 nmol l−1 — absolute detection limit 34 ng) with a precision better than ±2% for a 40 μg l−1 level. Calibration range extended from detection limit up to 100 μg l−1. Cyclic voltammetry indicates that the measured cyanide peak is obtained when the electrogenerated CuCN adsorbed onto the hanging mercury drop electrode surface, is oxidised at positive going potential scan. The method has been successfully applied to various industrial waste waters such as metal-finishing waste waters, water/sand mixtures from cleaning processes of coke production, leachates from wastes obtained from electrolytic cells of aluminium production, and liquors from gold extraction industry. Results obtained by the proposed method showed good agreement with those obtained by the standard methods (ion-selective potentiometry and the spectrophotometric pyridine method).  相似文献   

9.
A novel sequential injection (SI) method was developed for the determination of penicillamine (PA) and ephedrine (EP) based on the reaction of these drugs with tris(bipyridyl)ruthenium(II) (Ru(bpy)32+) and peroxydisulfate (S2O82−) in the presence of light. Derivatization of PA and EP with aldehydes has resulted in a significant enhancement of the chemiluminescence emission signal by at least 25 times for PA and 12 times for EP, leading to better sensitivities and lower detection limits for both drugs. The instrumental setup utilized a syringe pump and a multiposition valve to aspirate the reagents, (Ru(bpy)32+ and S2O82−), and a peristaltic pump to propel the sample. The experimental conditions affecting the derivatization reaction and the chemiluminescence reaction were systematically optimized using the univariate approach. Under the optimum conditions linear calibration curves between 0.2–24 μg mL−1 for PA and 0.2–20 μg mL−1 for EP were obtained. The detection limits were 0.1 μg mL−1 for PA and 0.03 μg mL−1 for EP. The procedure was applied to the analysis of PA and EP in pharmaceutical products and was found to be free from interferences from concomitants usually present in these preparations.  相似文献   

10.
Zenki M  Tanishita A  Yokoyama T 《Talanta》2004,64(5):1273-1277
Ascorbic acid (AA) could be determined in large quantities of a co-existing oxidant. The incorporation of an on-line reagent regeneration step based on redox reaction eliminates the baseline drift in the procedure. This makes it possible to adopt a circulatory flow injection method (cyclic FIA) and to determine AA repetitively. The method is based on the reduction of iron(III) to iron(II) by the analyte, the reaction of the produced iron(II) with 1,10-phenanthroline (phen) in a weak acidic medium to form a colored complex, and the subsequent oxidation reaction of iron(II) to iron(III) by the co-existing peroxodisulfate. A solution (50 ml) of 3.0×10−4 mol l−1 ferric chloride, 9.0×10−4 mol l−1 phen and 5.0×10−2 mol l−1 ammonium peroxodisulfate in acetate buffer (0.2 mol l−1, pH 4.5) is continuously circulated at a constant flow rate of 1.0 ml min−1. Into this stream, an aliquot (20 μl) of the sample solution containing AA is quickly injected by means of a six-way valve. The complex formed is monitored spectrophotometrically (at 510 nm) in the flow system. The stream then returns to the reservoir after passing through a time-delay coil (50 m). The iron(II)–(phen)3 complex is oxidized to iron(III)–(phen)3 complex by peroxodisulfate which exists excessively in the circulating reagent solution. The proposed method allows as many as 300 repetitive determinations of 15 mg l−1 AA with only 50 ml reservoir solution. The contents of AA in commercial pharmaceutical products were analyzed to demonstrate the capability of the developed system.  相似文献   

11.
Xu S  Tu G  Peng B  Han X 《Analytica chimica acta》2006,570(2):151-157
A novel strategy to construct a sensitive mediatorless sensor of H2O2 was described. At first, a cleaned gold electrode was immersed in thiol-functionalized poly(styrene-co-acrylic acid) (St-co-AA) nanosphere latex prepared by emulsifier-free emulsion polymerization St with AA and function with dithioglycol to assemble the nanospheres, then gold nanoparticles were chemisorbed onto the thiol groups and formed monolayers on the surface of poly(St-co-AA) nanospheres. Finally, horseradish peroxidase (HRP) was immobilized on the surface of the gold nanoparticles. The sensor displayed an excellent electrocatalytical response to reduction of H2O2 without the aid of an electron mediator. The biosensor showed a linear range of 8.0 μmol L−1–7.0 mmol L−1 with a detection limit of 4.0 μmol L−1. The biosensor retained more than 97.8% of its original activity after 60 days’ storage. Moreover, the studied biosensor exhibited good current reproducibility and good fabrication reproducibility.  相似文献   

12.
Horseradish peroxidase (HRP) was immobilised on silica gel modified with titanium oxide. This material was employed to prepare modified carbon paste electrode. The direct electron transfer of the hydrogen peroxide reduction by HRP was blocked when immobilised on silica–titanium. This biosensor presented a very sensitive response for phenol (1 μmol l−1) at an applied potential of 0 mV vs SCE. The best condition was achieved in phosphate buffer pH 6.8, ratio of hydrogen peroxide/phenol higher than 0.35. The biosensor showed a linear response range between 10 and 50 μmol l−1 of phenol, adjusted by the equation j=−32.8+16.3 [phenol], for n=5 with a correlation coefficient of 0.9995. The response time of the biosensor was about 3 s.  相似文献   

13.
《Analytica chimica acta》2004,520(1-2):117-124
Changes in fresh weight, total protein amounts (Bradford’s method), cadmium concentration (DPASV) and glutathione content (HPLC/MS) were studied in maize kernels cultivated for 5 days at three different cadmium concentrations (0, 10 and 100 μmol l−1 CdCl2). A highly sensitive HPLC/MS method was used for the determination of glutathione on a reversed-phase Atlantis dC18 chromatographic column (150 mm×2.1 mm, 3 μm particle size). An isocratic mode with acetonitrile–0.01% TFA (5:95, flow rate 0.1 ml min−1 and 30 °C) was applied. The m/z spectra and the data for the selected ion monitoring (SIM) mode were recorded at m/z for glutathione 308→179. Cadmium concentration was measured by a differential pulse adsorptive stripping voltammetry (DPASV) after deposition on a hanging mercury drop electrode (HMDE) at potential −0.7 V (accumulation time 180 s, acetate buffer of pH 3.6, 22 °C). An AUTOLAB with a VA-Stand 663 and a three-electrode system consisting of the HMDE as a working electrode with area 0.4 mm2, an Ag/AgCl/3 mol l−1 KCl as a reference electrode and a Pt-wire as an auxiliary electrode was employed. The maize kernels exposed to the highest cadmium concentration (100 μmol l−1) germinated formerly and much better. A rapid increase of the fresh weight probably relates with more intensive uptake of water in order to decrease cadmium concentration. An intensive preservation of homeostasis of Cd2+ ions in the germinating plants by defending mechanisms might explain differences of uptake rate of cadmium. The linear increase of GSH content with the exposure time at all studied concentration suggests the defending mechanisms might be triggered by concentrations of a heavy metal.  相似文献   

14.
A highly sensitive cathodic stripping voltammetric method for the determination of naringin is presented. It is based on the formation and accumulation of two naringin–mercury complexes at the electrode surface, followed by reduction of the surface species during a differential pulse voltammetric scan. The cathodic stripping responses at −0.25 V and −0.42 V, are evaluated with respect to various experimental conditions, such as composition and pH of the supporting electrolyte, naringin concentration, accumulation potential and preconcentration time. The new method is suitable for the determination of naringin concentrations between 0.1 mg l−1 (1.72×10−7 mol l−1) and 40 mg l−1 (6.88×10−5 mol l−1). A 3σ limit of detection of 32 μg l−1 (55 nmol l−1) can be reached. The relative standard deviation (r.s.d.) is <1.5%. Recovery experiments yielded a mean recovery of 97% (r.s.d.=4.1%). The application of the procedure to the selective determination of naringin in grapefruit juice is demonstrated.  相似文献   

15.
A method for the determination of chloramine using a flow injection peroxidase reactor based on the inhibition reaction of the enzyme is developed. The immobilisation of the horseradish peroxidase is performed on the commercial polymer carrier VA Epoxy Biosynth. The peroxidase activity is detected photometrically based on the dehydration of the dye 2,2′-azino-di-[3-ethylenebenzthiazoline-6-sulphonate] (ABTS). The calibration of the method gives a linear concentration range from 0.026 to 1.04 mmol l−1 (SDn=3=below 5%). The detection limit was calculated to 26 μmol l−1. A mixture out of competitive and non-competitive inhibition was analysed based on the Lineweaver–Burk plots.  相似文献   

16.
Using zinc hexamethylenedithiocarbamate (Zn(HMDC)2) and flame atomic absorption spectrometry (FAAS) and/or flow injection hydride generation atomic absorption spectrometry (FI-HGAAS), solvent extraction of As(III) from HCl and H2SO4 media into 2,6-dimethyl-4-heptanone (diisobutyl ketone, DIBK) was examined. Arsenic(III) was quantitatively extracted with 2.41×10−3 mol l−1 Zn(HMDC)2 from about 0.004 (pH 2.4) to 4 mol l−1 HCl and H2SO4 aqueous solutions. The logarithmic conditional extraction constant of As(HMDC)3 in the HCl–DIBK system was determined to be 8.3±0.7, by the measurement of the distribution ratios of Zn(II) and As(III). The effectiveness of the proposed extraction method was ascertained in the determination of As in geochemical standard reference materials supplied by the Geological Survey of Japan. Furthermore, the analysis of arsenic in procedural blanks was 0.083±0.003 μg l−1.  相似文献   

17.
The photophysics of three complexes of the form Ru(bpy)3−(pypm)2+ (where bpy2,2′-bipyridine, pypm 2-(2′-pyridyl)pyrimidine and P=1, 2 or 3) was examined in H2O, propylene carbonate, CH3CN and 4:1 (v/v) C2H5OH---CH3OH; comparison was made with the well-known photophysical behavior of Ru(bpy)32+. The lifetimes of the luminescent metal-to-ligand charge transfer (MLCT) excited states were determined as a function of temperature (between −103 and 90 °C, depending on the solvent), from which were extracted the rate constants for radiative and non-radiative decay and ΔE, the energy gap between the MLCT and metal-centered (MC) excited states. The results indicate that *Ru(bpy)2(pypm)2+ decays via a higher lying MLCT state, whereas *Ru(pypm)32+ and *Ru(pypm)2(bpy)2+ decay predominantly via the MC state.  相似文献   

18.
Electrochemiluminescence(ECL) is a powerful transduction technique used in biosensing and in vitro diagnosis, while the mechanism of ECL generation is complicated and affected by various factors. Herein the effect of ionic strength on ECL generation by the classical tris(2,2'-bipyridyl)ruthenium(II)[Ru(bpy)32+]/tri-n-propylamine(TPrA) system was investigated. It is clear that the ECL intensity decreases significantly with the increase of ionic strength, most likely arising from the reduced deprotonation rate of TPrA+·. We further combined microtube electrode(MTE) with ECL microscopy to unravel the evolution of ECL layer with the variation of ionic strength. At a low concentration of Ru(bpy)32+, the thickness of ECL layer(TEL) nearly kept unchanged with the ionic strength, indicating the surface-confined ECL generation is dominated by the oxidative-reduction route. While at a high concentration of Ru(bpy)32+, ECL generation is dominated by the catalytic route and TEL increases remarkably with the increase of ionic strength, because of the extended diffusion length of Ru(bpy)33+ at a reduced concentration of TPrA·.  相似文献   

19.
Bismuth as BiCl4 and BH4 ware successively retained in a column (150 mm × 4 mm, length × i.d.) packed with Amberlite IRA-410 (strong anion-exchange resin). This was followed by passage of an injected slug of hydrochloric acid resulting in bismuthine generation (BiH3). BiH3 was stripped from the eluent solution by the addition of a nitrogen flow and the bulk phases were separated in a gas–liquid separator. Finally, bismutine was atomized in a quartz tube for the subsequent detection of bismuth by atomic absorption spectrometry. Different halide complexes of bismuth (namely, BiBr4, BiI4 and BiCl4) were tested for its pre-concentration, being the chloride complexes which produced the best results. Therefore, a concentration of 0.3 mol l−1 of HCl was added to the samples and calibration solutions. A linear response was obtained between the detection limit (3σ) of 0.225 and 80 μg l−1. The R.S.D.% (n = 10) for a solution containing 50 μg l−1 of Bi was 0.85%. The tolerance of the system to interferences was evaluated by investigating the effect of the following ions: Cu2+, Co2+, Ni2+, Fe3+, Cd2+, Pb2+, Hg2+, Zn2+, and Mg2+. The most severe depression was caused by Hg2+, which at 60 mg l−1 caused a 5% depression on the signal. For the other cations, concentrations between 1000 and 10,000 mg l−1 could be tolerated. The system was applied to the determination of Bi in urine of patients under therapy with bismuth subcitrate. The recovery of spikes of 5 and 50 μg l−1 of Bi added to the samples prior to digestion with HNO3 and H2O2 was in satisfactory ranges from 95.0 to 101.0%. The concentrations of bismuth found in six selected samples using this procedure were in good agreement with those obtained by an alternative technique (ETAAS). Finally, the concentration of Bi determined in urine before and after 3 days of treatment were 1.94 ± 1.26 and 9.02 ± 5.82 μg l−1, respectively.  相似文献   

20.
Automated sequential injection (SIA) method for chemiluminescence (CL) determination of nonsteroidal anti-inflammatory drug indomethacin (I) was devised. The CL radiation was emitted in the reaction of I (dissolved in aqueous 50% v/v ethanol) with intermediate reagent tris(2,2′-bipyridyl)ruthenium(III) (Ru(bipy)33+) in the presence of acetate. The Ru(bipy)33+ was generated on-line in the SIA system by the oxidation of 0.5 mM tris(2,2′-bipyridyl)ruthenium(II) (Ru(bipy)32+) with Ce(IV) ammonium sulphate in diluted sulphuric acid. The optimum sequence, concentrations, and aspirated volumes of reactant zones were: 15 mM Ce(IV) in 50 mM sulphuric acid 41 μL, 0.5 mM Ru(bipy)32+ 30 μL, 0.4 M Na acetate 16 μL and I sample 15 μL; the flow rates were 60 μL s−1 for the aspiration into the holding coil and 100 μL s−1 for detection. Calibration curve relating the intensity of CL (peak height of the transient CL signal) to concentration of I was curvilinear (second order polynomial) for 0.1–50 μM I (r = 0.9997; n = 9) with rectilinear section in the range 0.1–10 μM I (r = 0.9995; n = 5). The limit of detection (3σ) was 0.05 μM I. Repeatability of peak heights (R.S.D., n = 10) ranged between 2.4% (0.5 μM I) and 2.0% (7 μM I). Sample throughput was 180 h−1. The method was applied to determination of 1 to 5% of I in semisolid dosage forms (gels and ointments). The results compared well with those of UV spectrophotometric method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号