首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Electron ionization (EI) mass spectra are not very helpful for characterizing ortho, meta, and para isomers of underivatized haloanilines since their spectra are virtually identical. In contrast, when the amino group of chloro-, bromo-, or iodoanilines is transformed to an N-formyl, N-acetyl, or N-benzoyl derivative, the spectra of the derivatives reveal a highly dramatic loss of a halogen radical, instead of an HX elimination usually expected from an "ortho effect." For example, the spectra of N-formyl, N-acetyl, and N-benzoyl derivatives of ortho isomers of chloro-, bromo-, and iodoanilines show a very prominent peak at m/z 120, 134, and 196, respectively, for the loss of the corresponding halogen atom.  相似文献   

2.
确定初始电离位点是EI源质谱解析中一个至关重要的环节. 本文提出了一种确定初始电离位点的新方法. 该法通过计算和分析分子离子自旋密度, 进而比较从中性分子到分子离子的电荷变化和键长变化, 从而确定初始电离位点. 对简单吲哚类生物碱质谱的特征裂解机理进行了预测, 结果与标准物质的质谱吻合. 在此基础上, 与传统的根据基团电离能确定电离位点的方法进行了比较. 结果表明, 该法优于电离能方法. 此法不仅可用于预测以α-裂解为主导的吲哚生物碱和其它含氮化合物的质谱裂解规律, 还为揭示其它小分子化合物以及气相多肽离子的裂解机理奠定了基础.  相似文献   

3.
The electron ionization mass spectra of 1-cyclopropyl-4-substituted-1,2,3,6-tetrahydropyridine derivatives are characterized by a base peak corresponding to [M-15]+. Evidence is presented to support a fragmentation process involving an initial cyclopropyl ring opening of the parent cyclopropylaminyl radical cation followed by intramolecular transfer of a hydrogen atom from the ring carbon atoms α to nitrogen to the primary carbon-centered radical and finally a fragmentation step proceeding by loss of a methyl radical and formation of a stable N-ethenyldihydropyridinium ion, the [M-15]+ fragment.  相似文献   

4.
Correlationbse tween molecular structure and fragmentation observed in electron capture negative chemical ionization mass spectra (moderator gas = methane) of 49 selected tetrachlorinated, pentachlorinated, and hexachlorinated biphenyls have been investigated by using molecular modeling. The semiempirical general molecular orbital program MOPAC was used to calculate molecular properties for biphenyl and the 209 polychlorinated biphenyls. The mass spectrometric ionization and fragmentation processes were found to be linked to the number of chlorine atoms present on the biphenyl, and to the number of those chlorine atoms in the ortho (2, 2′, 6, and 6′) positions. The intensity of molecular ions increased with the number of chlorine atoms present, but this was counteracted by enhanced fragmentation as the number of ortho position chlorine atoms increased. The molecular parameters that were most closely linked with the number of ortho chlorine atoms were the twist angle between the phenyl rings and the energy of the lowest unoccupied molecular orbital (LUMO). It is suggested that fragmentation occurs when the energy of the ionizing electron exceeds the energy difference between the LUMO and LlJMO + 1 orbitals.  相似文献   

5.
Aromatic radicals form in a variety of reacting gas-phase systems, where their molecular weight growth reactions with unsaturated hydrocarbons are of considerable importance. We have investigated the ion-molecule reaction of the aromatic distonic N-methyl-pyridinium-4-yl (NMP) radical cation with 2-butyne (CH(3)C≡CCH(3)) using ion trap mass spectrometry. Comparison is made to high-level ab initio energy surfaces for the reaction of NMP and for the neutral phenyl radical system. The NMP radical cation reacts rapidly with 2-butyne at ambient temperature, due to the apparent absence of any barrier. The activated vinyl radical adduct predominantly dissociates via loss of a H atom, with lesser amounts of CH(3) loss. High-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry allows us to identify small quantities of the collisionally deactivated reaction adduct. Statistical reaction rate theory calculations (master equation/RRKM theory) on the NMP+2-butyne system support our experimental findings, and indicate a mechanism that predominantly involves an allylic resonance-stabilized radical formed via H atom shuttling between the aromatic ring and the C(4) side-chain, followed by cyclization and/or low-energy H atom β-scission reactions. A similar mechanism is demonstrated for the neutral phenyl radical (Ph˙)+2-butyne reaction, forming products that include 3-methylindene. The collisionally deactivated reaction adduct is predicted to be quenched in the form of a resonance-stabilized methylphenylallyl radical. Experiments using a 2,5-dichloro substituted methyl-pyridiniumyl radical cation revealed that in this case CH(3) loss from the 2-butyne adduct is favoured over H atom loss, verifying the key role of ortho H atoms, and the shuttling mechanism, in the reactions of aromatic radicals with alkynes. As well as being useful phenyl radical analogues, pyridiniumyl radical cations may form in the ionosphere of Titan, where they could undergo rapid molecular weight growth reactions to yield polycyclic aromatic nitrogen hydrocarbons (PANHs).  相似文献   

6.
The intramolecular dimer radical cation and charge-transfer complex of various cyclophanes were investigated by using pulse radiolysis measurements. The charge resonance band due to the dimer radical cation of cyclophanes appeared in the near-IR region, which showed a blue-shift as the distance between the two benzene rings of cyclophane decreased. The stabilization energy of the dimer radical cation, which was estimated from the peak position of the charge resonance band, was explained by the exchange interaction, while the substituent effect was small. The absorption peak of the charge-transfer complex with chlorine atom also showed the shift in accordance with the oxidation potential of cyclophanes.  相似文献   

7.
Formation of radical cation and charge-transfer complex of [3n]cyclophanes (n = 3, 5, 6) was investigated by transient absorption spectroscopy during pulse radiolysis. Radical cations of [3n]cyclophanes showed the charge resonance band around 700 nm which exhibited a blue-shift as the number of trimethylene bridges increased, indicating formation of highly stabilized intramolecular dimer radical cation of [3n]cyclophanes. The absorption peak of the charge-transfer complex with chlorine atom also showed the shift in accord with the oxidation potential of [3n]cyclophanes.  相似文献   

8.
A study is made of the mass spectral fragmentation pathways of sildenafil, thiosildenafil, and analogous compounds. A prominent gas‐phase reaction that occurs during collision‐induced dissociation (CID) of thiosildenafil compounds is the transfer of an alkyl group from the piperazine nitrogen atom to the sulfur atom of the thiocarbonyl group. This phenomenon is clearly demonstrated through a comparison of electrospray ionization mass spectral fragmentation patterns of four sildenafil‐type compounds and three related thiosildenafil derivatives. Molecular modeling and fragmentation patterns support a direct intramolecular alkyl transfer mechanism rather than an ion‐neutral complex mechanism. CID of thiohydroxyhomosildenafil results in a facile hydroxyethyl migration to the sulfur atom followed by a second intramolecular reaction to form a spiro‐1,3‐oxathiolane ring, which fragments in two directions to generate both carbonyl and thiocarbonyl product ions from this thiocarbonyl compound. While methyl migration to the thiocarbonyl sulfur atom of thiosildenafil is dominant, methyl migration to the carbonyl oxygen atom of sildenafil may occur to a small extent. Published in 2008 by John Wiley & Sons, Ltd.  相似文献   

9.
The mass spectra of alkanesulfonyl chlorides can be rationalized by loss of a chlorine atom from the molecular ion, followed by loss of SO2 with concomitant alkyl cation formation. The mass spectra of two α-mesyl sulfonyl chlorides exhibit a new fragmentation process in which the chlorine atom initially attached to sulfur migrates to the α-carbon atom with loss of SO2, thereby resulting in retention of chlorine in the alkyl cation.  相似文献   

10.
Arylsulfonamides are attractive pharmacophores for drug candidates. Fragmentation behaviors of selected aromatic sulfonamides were investigated using electrospray ionization mass spectrometry in the positive ion mode. Some of the sulfonamides afforded unique loss of 64 (loss of SO(2)) ions upon collision-induced dissociation followed by intramolecular rearrangements in the gas phase. This SO(2) elimination-rearrangement pathway leading to the generation of [M + H - SO(2)](+) ions appeared to be susceptible to substitutions on the aromatic (Ar) ring that would affect the Ar--sulfur bond strength and the stability of the partially positive charge developed at the ipso position upon bond dissociation. Electron withdrawing groups such as chlorine attached to the aromatic ring at ortho position seem to promote the SO(2) extrusion. Although this fragmentation pathway in atmospheric pressure ionization MS is less predictable than in electron impact MS, it is a frequently encountered reaction. The absence of this fragmentation pathway in some of the arylsulfonamides indicates that other factors such as nucleophilicity of the nitrogen may also play a role in the process. With respect to the site of attachment of the migrating NR'R', ipso-substitution on the aromatic ring is evident since this fragmentation mechanism is operative in the fully ortho-substituted arylsulfonamides.  相似文献   

11.
The intrinsic chemical properties of the gaseous adenine radical cation were examined by using dual cell Fourier transform ion cyclotron resonance mass spectrometry. The adiabatic recombination energy of the radical cation (ionization energy of neutral adenine) was found by bracketing experiments to be 8.55 ± 0.1 eV (at 298 K; earlier literature values range from 8.3 to 8.9 eV). Based on this value, the heat of formation (ΔHf298) of the adenine radical cation is estimated to be 246 ± 3 kcal/mol. The acidity (ΔHacid298) of the adenine radical cation was bracketed to be 221 ± 2 kcal/mol. These thermochemical values suggest that the adenine radical cation reacts with neutral guanine by electron abstraction or proton transfer, with neutral cytosine by proton transfer, and via neither pathway with neutral thymine, molecular water or a sugar moiety of DNA (modeled by tetrahydrofuran). Experimental examination of the gas-phase reactivity of the adenine radical cation revealed a slow deuterium atom abstraction from perdeuterated tetrahydrofuran. Hence, in the absence of a nearby guanine or cytosine, the adenine radical cation may be able to abstract a hydrogen atom from a sugar moiety of DNA.  相似文献   

12.
The unimolecular reactions of the radical cation of dimethyl phenylarsane, C6H5As(CH3)2, 1*+ and of the methyl phenylarsenium cation, C6H5As+CH3, 2+, in the gas phase were investigated using deuterium labeling and methods of tandem mass spectrometry. Additionally, the rearrangement and fragmentation processes were analyzed by density functional theory (DFT) calculations at the level UBHLYP/6- 311+G(2d,p)//UBHLYP/5-31+G(d). The molecular ion 1*+ decomposes by loss of a .CH3 radical from the As atom without any rearrangement, in contrast to the behavior of the phenylarsane radical cation. In particular, no positional exchange of the H atoms of the CH3 group and at the phenyl ring is observed. The results of DFT calculations show that a rearrangement of 1*+ by reductive elimination of As and shift of the CH3 group is indeed obstructed by a large activation barrier. The MIKE spectrum of 2+ shows that this arsenium cation fragments by losses of H2 and AsH. The fragmentation of the trideuteromethyl derivative 2-d3+ proves that all H atoms of the neutral fragments originate specifically from the methyl ligand. Identical fragmentation behavior is observed for metastable m-tolyl arsenium cation, m-CH3C6H4As+H, 2tol+. The loss of AsH generates ions C7H7+ which requires rearrangement in 2+ and bond formation between the phenyl and methyl ligands prior to fragmentation. The DFT calculations confirm that the precursor of this fragmentation is the benzyl methylarsenium cation 2bzl+, and that 2bzl+ is also the precursor ion fo the elimination of H2. The analysis of the pathways for rearrangements of 2+ to the key intermediate 2bzl+ by DFT calculations show that the preferred route corresponds to a 1,2-H shift of a H atom from the CH3 ligand to the As atom and a shift of the phenyl group in the reverse direction. The expected rearrangement by a reductive elimination of the As atom, which is observed for the phenylarsenium cation and for halogeno phenyl arsenium cations, requires much more activation enthalpy.  相似文献   

13.
Conformation-dependent properties of L-tyrosine and L-tryptophan in neutral and radical cations were studied by using the density functional theory (DFT) with a new density functional M05-2X. The results are compared with those obtained by using the conventional DFT (B3LYP). Results obtained by both types of DFT were in qualitative accord, including the existence of two conformational subgroups and their subgroup-dependent adiabatic ionization energy and hydrogen bonding. On the other hand, quantitative differences were found between the two DFT methods as well: the M05-2X method successfully reproduced experimental adiabatic ionization energy, whereas the B3LYP functional consistently yielded significantly lower values by 0.2-0.3 eV. More importantly, natural bond orbital (NBO) analysis for cationic conformers showed that all conformers of L-tyrosine and L-tryptophan undergo charge localization upon ionization regardless of the presence of intramolecular hydrogen bonding, unlike the case of L-phenylalanine that was treated earlier by other studies. Different degrees of charge localization among all three aromatic amino acids are explained by employing a simple model in which the aromatic amino acid is assumed to consist of two submoieties of distinct cationic core: the backbone and aromatic side chain. The difference in adiabatic ionization energy between these two submoieties is found to govern the degree of charge localization.  相似文献   

14.
A 50 m/z unit loss from protonated 4-benzenesulfinyl-3-methylphenylamine has been observed and investigated using electrospray ionisation quadrupole ion trap mass spectrometry (ESI-QIT-MS). It was hypothesised that the specific fragmentation was affected by the presence of an ortho methyl group in relation to the sulfoxide functionality, i.e. an ortho effect influences the preferred dissociation pathway. This was because the des-methyl homologue did not display a 50 m/z unit loss. This fragmentation was shown to be a two-step process with sequential losses of a hydroxyl radical and a thiol radical. Molecular modelling calculations showed that the most favourable site of protonation for 4-benzenesulfinyl-3-methylphenylamine was the sulfoxide oxygen, which would facilitate the loss of a hydroxyl radical. Subsequent deuterium-exchange experiments confirmed that the loss was a hydroxyl radical and afforded definitive assignment of the site of protonation. Furthermore, the involvement of a single exchangeable hydrogen atom in the overall 50 m/z unit loss was demonstrated. Thus, supportive evidence was provided for the involvement of the ortho methyl group in the second stage of the fragmentation, leading to the loss of the thiol radical. Accurate mass measurements, performed using electrospray ionisation Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS), verified the elemental formulae of the individual losses. The ion structure following the 50 m/z unit loss was proposed to be a protonated aminofluorene and was supported by comparing the product ion spectrum of commercially available protonated 2-aminofluorene with the MS4 data of protonated 4-benzenesulfinyl-3-methylphenylamine. Fragmentation mechanisms are proposed. The relevance of the loss with regards to pharmaceutical drug metabolite identification is discussed.  相似文献   

15.
An important problem in mass isotopomer abundance mass spectrometry (MIAMS) is the dependence of measured mass isotopomer abundances on sample concentration. We have evaluated the role of ionization energy on mass isotopomer abundance ratios of methyl palmitate as a function of sample concentration. Ionization energy was varied using electron impact ionization (EI) and metastable atom bombardment (MAB). The latter generates a beam of metastable species capable of ionizing analyte molecules by Penning ionization. We observed that ionization of methyl palmitate by EI (70 eV) showed the greatest molecular ion fragmentation and also showed the greatest dependence of relative isotopomer abundance ratios on sample concentration. Ionization using the 3P2 and 3P0 states of metastable krypton (9.92 and 10.56 eV, respectively) resulted in almost no molecular ion fragmentation, and the isotopomer abundances quantified were essentially independent of sample concentration. Ionization using the 3P2 and 3P0 states of metastable argon (11.55 and 11.72 eV, respectively) showed molecular ion fragmentation intermediate between that of EI and MAB(Kr) and showed an isotopomer concentration dependence which was less severe than that observed with EI but more severe than that observed with MAB(Kr). The observed decrease in the dependence of isotopomer abundance on sample concentration with a decrease in molecular ion fragmentation is consistent with the hypothesis that proton transfer from a fragment cation to a neutral molecule is the gas phase reaction mechanism responsible for the concentration dependence. Alternative explanations, e.g., hydrogen abstraction from a neutral molecule to a molecular cation, is not supported by these results. Moreover, the MAB ionization technique shows potential for eliminating one source of error in MIAMS measurements of methyl palmitate, in particular, and of fatty acids methyl esters, in general.  相似文献   

16.
The alkylation of benzyl chloride has been studied in the gas phase using radiolytically formed carbenium ions as the charged reagents. The intramolecular selectivity of the electrophilic attack, deduced from the composition of the neutral products, is characterized by the comparable reactivity of the aromatic ring and of the halogen atom of the substrate toward the gaseous cations. As to ring alkylation, the reactivity of the ortho positions of benzyl chloride is considerably lower than those of chlorobenzene. The results are compared with pertinent mass-spectrometric data, and discussed in connection with existing models of gas phase aromatic substitution by charged electrophiles.  相似文献   

17.
Distonic radical cations (DRCs) with spatially separated charge and radical sites have, so far, largely been observed by gas-phase mass spectrometry and/or matrix isolation spectroscopy work. Herein, we disclose the isolation of a crystalline dicarbondiphosphide-based β-distonic radical cation salt 3.+ (BARF) (BARF=[B(3,5-(CF3)2C6H3)4)]) stable at room temperature and formed by a one-electron-oxidation-induced intramolecular skeletal rearrangement reaction. Such a species has been validated by electron paramagnetic resonance (EPR) spectroscopy, single-crystal X-ray diffraction, UV/Vis spectroscopy and density functional theory (DFT) calculations. Compound 3.+ (BARF) exhibits a large majority of spin density at a two-coordinate phosphorus atom (0.74 a.u.) and a cationic charge located predominantly at the four-coordinate phosphorus atom (1.53 a.u.), which are separated by one carbon atom. This species represents an isolable entity of a phosphorus radical cation that is the closest to a genuine phosphorus DRC to date.  相似文献   

18.
The pathways of the ([M+H](+)) ions generated from electrosprayed solutions of nine 1,3,5-trisubstituted 2-pyrazoline derivatives were studied using energy-variable collision-induced dissociation (CID) and pseudo-MS(3) (in-source CID combined with MS/MS) methods. It was shown that under CID conditions several structurally important product ions such as the 2,4-substituted azete and 1,2-substituted aziridine ions were formed. The compositions of the product ions were unambiguously supported by accurate mass measurement (mass accuracy was within +/- 8 ppm). The fragmentation pathways of 1,3,5-trisubstituted 2-pyrazolines were established by means of pseudo-MS(3). It was found that a substituent at the N-1 position greatly affects the fragmentation pathways of the 2-pyrazoline derivatives. The 1-acetyl- and 1-propionyl-2-pyrazoline derivatives dissociate mainly through formation of a pyrazolium cation, while in the case of 1-phenyl-2-pyrazoline derivatives product ions arising from the consecutive fragmentation of 2,4-substituted azete and 1,2-substituted aziridine ions dominate. Another interesting finding is the formation of a radical cation from the 2,4-substituted azete by loss of a methyl radical. The fragmentation yield as a function of the collision energy for each of the 1,3,5-trisubstituted 2-pyrazolines was determined. Based on the fragmentation yield versus collision energy curves the relative fragmentation stabilities for the 1,3,5-trisubstituted 2-pyrazoline derivatives were also evaluated.  相似文献   

19.
1-[1'-Benzylbenzimidazolyl]-5-halogenophenyl-3-methylformazans with the halogen (chlorine or bromine) in the para or ortho positions have been synthesized. In a comparative study of the reactions of the ortho and para halogen-containing isomers, steric hindrance due to a halogen in the ortho position of the phenyl radical has been observed in the formation of tetrazolium salts and nickel and copper complexes, and in the capacity of phototropic transformations.For part XXV, see [1].  相似文献   

20.
The loss of C(2)H(2) is a low activation energy dissociation channel for anthracene (C(14)H(10)) and acridine (C(13)H(9)N) cations. For the latter ion another prominent fragmentation pathway is the loss of HCN. We have studied these two dissociation channels by collision induced dissociation experiments of 50 keV anthracene cations and protonated acridine, both produced by electrospray ionization, in collisions with a neutral xenon target. In addition, we have carried out density functional theory calculations on possible reaction pathways for the loss of C(2)H(2) and HCN. The mass spectra display features of multi-step processes, and for protonated acridine the dominant first step process is the loss of a hydrogen from the N site, which then leads to C(2)H(2)/HCN loss from the acridine cation. With our calculations we have identified three pathways for the loss of C(2)H(2) from the anthracene cation, with three different cationic products: 2-ethynylnaphthalene, biphenylene, and acenaphthylene. The third product is the one with the overall lowest dissociation energy barrier. For the acridine cation our calculated pathway for the loss of C(2)H(2) leads to the 3-ethynylquinoline cation, and the loss of HCN leads to the biphenylene cation. Isomerization plays an important role in the formation of the non-ethynyl containing products. All calculated fragmentation pathways should be accessible in the present experiment due to substantial energy deposition in the collisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号