首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A hydrodynamic boundary condition is developed for lattice Boltzmann hydrodynamics using a square, orthogonal grid. A constraint based on energy considerations is developed to provide closure for the equations which govern the particle distribution at the boundaries. This boundary condition is applied to the two-dimensional, steady flow of an incompressible fluid behind a grid, known as Kovasznay flow. The results are compared to those using alternate boundary conditions using the known exact solution. The hydrodynamic boundary condition produces quadratic spatial convergence, while alternate techniques fail to maintain this second-order accuracy.  相似文献   

2.
史冬岩  王志凯  张阿漫 《物理学报》2014,63(17):174701-174701
采用格子Boltzmann方法(LBM)建立了气液固三相耦合的动力学模型,研究了相同尺度下上浮气泡与复杂壁面的相互耦合作用.首先,基于黏性流体理论,通过构建一组格子Boltzmann(LB)方程来描述气液两相的运动,并以LB离散体积力的形式计入了黏性力、表面张力和重力.同时,采用LBM中的Half-way反弹模型与有限差分格式相结合的方式进行固壁边界的处理.然后,利用本文建立的模型,对不同特征尺寸比条件下,气泡与考虑边缘效应的平面固壁和曲面固壁的耦合特性进行了研究.研究发现固壁边界条件以及特征尺寸比对气泡的运动和拓扑结构的变化都具有明显的非线性影响.最后,研究了流体属性对气泡与复杂壁面耦合规律的影响.  相似文献   

3.
4.
5.
Lattice Boltzmann computational fluid dynamics in three dimensions   总被引:7,自引:0,他引:7  
The recent development of the lattice gas method and its extension to the lattice Boltzmann method have provided new computational schemes for fluid dynamics. Both methods are fully paralleled and can easily model many different physical problems, including flows with complicated boundary conditions. In this paper, basic principles of a lattice Boltzmann computational method are described and applied to several three-dimensional benchmark problems. In most previous lattice gas and lattice Boltzmann methods, a face-centered-hyper-cubic lattice in four-dimensional space was used to obtain an isotropic stress tensor. To conserve computer memory, we develop a model which requires 14 moving directions instead of the usual 24 directions. Lattice Boltzmann models, describing two-phase fluid flows and magnetohydrodynamics, can be developed based on this simpler 14-directional lattice. Comparisons between three-dimensional spectral code results and results using our method are given for simple periodic geometries. An important property of the lattice Boltzmann method is that simulations for flow in simple and complex geometries have the same speed and efficiency, while all other methods, including the spectral method, are unable to model complicated geometries efficiently.  相似文献   

6.
We define a lattice Boltzmann model of solid, deformable suspensions immersed in a fluid itself described in terms of the lattice Boltzmann method. We discuss the rules governing the internal dynamics of the solid object as well as the rules specifying the interaction between solid and fluid particle. We perform a numerical drag experiment to validate the model. Finally we consider the case of a population of flexible chains in suspension in a shear stress flow and study the influence on the velocity profile.  相似文献   

7.
We have introduced a modified penalty approach into the flow-structure interaction solver that combines an immersed boundary method (IBM) and a multi-block lattice Boltzmann method (LBM) to model an incompressible flow and elastic boundaries with finite mass. The effect of the solid structure is handled by the IBM in which the stress exerted by the structure on the fluid is spread onto the collocated grid points near the boundary. The fluid motion is obtained by solving the discrete lattice Boltzmann equation. The inertial force of the thin solid structure is incorporated by connecting this structure through virtual springs to a ghost structure with the equivalent mass. This treatment ameliorates the numerical instability issue encountered in this type of problems. Thanks to the superior efficiency of the IBM and LBM, the overall method is extremely fast for a class of flow-structure interaction problems where details of flow patterns need to be resolved. Numerical examples, including those involving multiple solid bodies, are presented to verify the method and illustrate its efficiency. As an application of the present method, an elastic filament flapping in the Kármán gait and the entrainment regions near a cylinder is studied to model fish swimming in these regions. Significant drag reduction is found for the filament, and the result is consistent with the metabolic cost measured experimentally for the live fish.  相似文献   

8.
We consider the lattice Boltzmann method for immiscible multiphase flow simulations. Classical lattice Boltzmann methods for this problem, e.g. the colour gradient method or the free energy approach, can only be applied when density and viscosity ratios are small. Moreover, they use additional fields defined on the whole domain to describe the different phases and model phase separation by special interactions at each node. In contrast, our approach simulates the flow using a single field and separates the fluid phases by a free moving interface. The scheme is based on the lattice Boltzmann method and uses the level set method to compute the evolution of the interface. To couple the fluid phases, we develop new boundary conditions which realise the macroscopic jump conditions at the interface and incorporate surface tension in the lattice Boltzmann framework. Various simulations are presented to validate the numerical scheme, e.g. two-phase channel flows, the Young–Laplace law for a bubble and viscous fingering in a Hele-Shaw cell. The results show that the method is feasible over a wide range of density and viscosity differences.  相似文献   

9.
Stability and hydrodynamic behaviors of different lattice Boltzmann models including the lattice Boltzmann equation (LBE), the differential lattice Boltzmann equation (DLBE), the interpolation-supplemented lattice Boltzmann method (ISLBM) and the Taylor series expansion- and least square-based lattice Boltzmann method (TLLBM) are studied in detail. Our work is based on the von Neumann linearized stability analysis under a uniform flow condition. The local stability and hydrodynamic (dissipation) behaviors are studied by solving the evolution operator of the linearized lattice Boltzmann equations numerically. Our investigation shows that the LBE schemes with interpolations, such as DLBE, ISLBM and TLLBM, improve the numerical stability by increasing hyper-viscosities at large wave numbers (small scales). It was found that these interpolated LBE schemes with the upwind interpolations are more stable than those with central interpolations because of much larger hyper-viscosities.  相似文献   

10.
A lattice Boltzmann method is developed to simulate three-dimensional solid particle motions in fluids. In the present model, a uniform grid is used and the exact spatial location of the physical boundary of the suspended particles is determined using an interpolation scheme. The numerical accuracy and efficiency of the proposed lattice Boltzmann method is demonstrated by simulating the sedimentation of a single sphere in a square cylinder. Highly accurate simulation results can be achieved with few meshes, compared with the previous lattice Boltzmann methods. The present method is expected to find applications on the flow systems with moving boundaries, such as the blood flow in distensible vessels, the particle-flow interaction and the solidification of alloys.  相似文献   

11.
薛泽  施娟  王立龙  周锦阳  谭惠丽  李华兵 《物理学报》2013,62(8):84702-084702
运用晶格玻尔兹曼方法对单个悬浮粒子在锥形管中的运动进行了数值计算, 给出了锥形管流体的速度分布和压力分布等. 粒子所受的流体作用力分别用动量交换法、改进的动量交换法和压力张量积分法进行计算. 分析了在不同初始位置释放的粒子的运动轨迹和速度变化情况, 结果表明压力张量积分法和改进的动量交换法的计算结果一致, 而没有改进的动量交换法的计算结果和前两者略有不同. 关键词: 晶格玻尔兹曼方法 锥形管 悬浮粒子 改进的动量交换法  相似文献   

12.
13.
《Physics letters. A》2006,354(3):173-182
A momentum exchange-based immersed boundary-lattice Boltzmann method is presented in this Letter for simulating incompressible viscous flows. This method combines the good features of the lattice Boltzmann method (LBM) and the immersed boundary method (IBM) by using two unrelated computational meshes, an Eulerian mesh for the flow domain and a Lagrangian mesh for the solid boundaries in the flow. In this method, the non-slip boundary condition is enforced by introducing a forcing term into the lattice Boltzmann equation (LBE). Unlike the conventional IBM using the penalty method with a user-defined parameter or the direct forcing scheme based on the Navier–Stokes (NS) equations, the forcing term is simply calculated by the momentum exchange of the boundary particle density distribution functions, which are interpolated by the Lagrangian polynomials from the underlying Eulerian mesh. Numerical examples show that the present method can provide very accurate numerical results.  相似文献   

14.
用晶格玻尔兹曼方法研究微结构表面的疏水性能   总被引:1,自引:0,他引:1       下载免费PDF全文
王文霞  施娟  邱冰  李华兵 《物理学报》2010,59(12):8371-8376
将固体表面分别近似为具有简单的周期性矩形、三角形和半圆形微粗糙结构表面,建立了两相流的晶格玻尔兹曼模型.通过测量不同微粗糙结构表面上液滴的接触角,探讨微结构形状和尺寸的改变对固体材料表面疏水性能的影响.最后,由流体在各种糙壁管中的速度滑移,验证了结论的正确性.  相似文献   

15.
振荡流共轭换热现象广泛存在于热声热机等工程应用中.基于双分布格子-Boltzmann模型,对平行平板间振荡流共轭换热进行了数值模拟.通过假定共轭界面处流体和固体的未知内能分布函数均为对应的平衡态滑移修正格式,提出了一种处理共轭换热边界的新方法.模拟结果表明,该方法可以保证共轭界面上温度连续和热流连续.分析了不同流体与固体导热系数比情况下振荡流共轭换热的速度场、温度场以及热流分布的特点.  相似文献   

16.
Analytical solution for the axi-symmetrical lattice Boltzmann model is obtained for the low-Mach number cylindrical Couette flows. In the hydrodynamic limit, the present solution is in excellent agreement with the result of the Navier–Stokes equation. Since the kinetic boundary condition is used, the present analytical solution using nine discrete velocities can describe flows with the Knudsen number up to 0.1. Meanwhile, the comparison with the simulation data obtained by the direct simulation Monte Carlo method shows that higher-order lattice Boltzmann models with more discrete velocities are needed for highly rarefied flows.  相似文献   

17.
In recent years, the lattice Boltzmann method (LBM) has been widely adopted to simulate various fluid systems, and the boundary treatment has been an active topic during the LBM development. In this paper, we present a novel approach to improve the bounce-back boundary treatment for moving surfaces with arbitrary configurations. We follow the framework originally proposed by Ladd [A.J.C. Ladd, Numerical simulations of particulate suspensions via a discretized Boltzman equation. Part 1. Theoretical foundation, Journal of Fluid Mechanics 271 (1994) 285–309]; however, the adjustment in the density distribution during the bouncing-back process at the boundary is calculated using the midpoint velocity inter-/extrapolated from the boundary and fluid velocities, instead of the real boundary velocity in the Ladd method. This modification ensures that the bouncing-back process and the density distribution adjustment both take place at a same location: the midpoint of a boundary lattice link, and thus removes the discrepancy of bouncing-back at the midpoint but density distribution adjustment at the boundary point in the original Ladd method. When compared with other existing boundary models, this method involves a simpler algorithm and exhibits a comparable or even better accuracy in describing flow field and flow-structure interaction, as demonstrated by several test simulations. Therefore, this boundary method could be considered as a competitive alternative for boundary treatment in LBM simulations, especially for particulate and porous flows with large fluid–solid interfacial areas.  相似文献   

18.
Lattice Boltzmann Model for Free Surface Flow for Modeling Foaming   总被引:1,自引:0,他引:1  
We present a 2D- and 3D-lattice Boltzmann model for the treatment of free surface flows including gas diffusion. Interface advection and related boundary conditions are based on the idea of the lattice Boltzmann equation. The fluid dynamic boundary conditions are approximated by using the mass and momentum fluxes across the interface, which do not require explicit calculation of gradients. A similar procedure is applied to fulfill the diffusion boundary condition. Simple verification tests demonstrate the correctness of the algorithms. 2D- and 3D-foam evolution examples demonstrate the potential of the method.  相似文献   

19.
We integrate the lattice Boltzmann method (LBM) and immersed boundary method (IBM) to capture the coupling between a rigid boundary surface and the hydrodynamic response of an enclosed particle laden fluid. We focus on a rigid box filled with a Newtonian fluid where the drag force based on the slip velocity at the wall and settling particles induces the interaction. We impose an external harmonic oscillation on the system boundary and found interesting results in the sedimentation behavior. Our results reveal that the sedimentation and particle locations are sensitive to the boundary walls oscillation amplitude and the subsequent changes on the enclosed flow field. Two different particle distribution analyses were performed and showed the presence of an agglomerate structure of particles. Despite the increase in the amplitude of wall motion, the turbulence level of the flow field and distribution of particles are found to be less in quantity compared to the stationary walls. The integrated LBM-IBM methodology promised the prospect of an efficient and accurate dynamic coupling between a non-compliant bounding surface and flow field in a wide-range of systems. Understanding the dynamics of the fluid-filled box can be particularly important in a simulation of particle deposition within biological systems and other engineering applications.  相似文献   

20.
刘飞飞  魏守水  魏长智  任晓飞 《物理学报》2014,63(19):194704-194704
浸入边界—晶格波尔兹曼法在流固耦合等复杂的流体系统中得到广泛的应用.本文采用基于速度源修正的浸入边界—晶格玻尔兹曼法,建立了仿生微流体驱动模型,创新性地将波动弹性体的速度引入晶格玻尔兹曼方程,避免了传统浸入边界—晶格玻尔兹曼法中浸入边界速度-结构变形-力之间的转换,提高了计算效率和准确率.研究了行波波动细丝对流场内流动速度和压力的影响,重点分析了驱动模型各项参数对微流体的驱动效果.研究结果表明:细丝长度、频率、振幅的增加引起出口处流量的增加;波长、流体粘滞系数以及细丝位置与出口处流量呈复杂的非线性关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号