首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Broadband single pulse coherent anti-Stokes Raman scattering (CARS) experiments employing a folded-box phase-matching geometry in a pulsed hypervelocity blunt body flow are presented. Rovibrational spectra of molecular nitrogen, produced in the freestream and within the shock layer at moderately high enthalpy (8.4 MJ/kg), are examined. Difficulties peculiar to the application of a single pulse optical technique to a high enthalpy pulsed flow facility are discussed and measurements of flow temperatures are presented. Theoretically calculated values for temperatures based upon algorithms used to determine freestream and shock layer conditions agree well with experimental measurements using the CARS technique. The measurements indicate that thermal non-equilibrium conditions exist within the freestream, and that near thermal equilibrium exists at the point of measurement within the shock layer. The comparison between the experiment and theory in the shock layer is improved by using the measured freestream temperatures as input to the shock layer computations.  相似文献   

2.
Experimental and numerical studies of underwater shock wave attenuation   总被引:3,自引:0,他引:3  
Saito  T.  Marumoto  M.  Yamashita  H.  Hosseini  S.H.R.  Nakagawa  A.  Hirano  T.  Takayama  K. 《Shock Waves》2003,13(2):139-148
The attenuation of an underwater shock wave by a thin porous layer is studied both experimentally and numerically. The shock waves are generated by exploding 10 mg silver azide pellets and the pressures at different distances from the explosion center are measured. Measurements are also carried out with a gauze layer placed between the explosion source and the pressure gauge. The results with and without the gauze layer are compared evaluating the shock wave attenuation. Numerical simulations of the phenomenon are also carried out for a simple wave attenuation model. The results are compared with the experimental data. Despite the simple mathematical model of wave attenuation, the agreement between the experimental and numerical results is reasonable.Received: 22 October 2002, Accepted: 17 June 2003, Published online: 5 August 2003PACS: 47.11.+j, 47.40.Nm, 47.55.Mh  相似文献   

3.
A novel technique which uses a microfabricated shock target array assembly is described, where the passage of a shock front through a thin (0.5μm) polycrystalline layer and the subsequent unloading process is monitored in real time with ultrafast coherent Raman spectroscopy. Using a high repetition rate laser shock generation technique, high resolution, coherent Raman spectra are obtained in shocked anthracene and in a high explosive material, NTO, with time resolution of ∼ 50 ps. Spectroscopic measurements are presented which yield the shock pressure (up to 5 GPa), the shock velocity (∼ 4 km/s), the shock front risetime (t r < 25 ps), and the temperature (∼ 400°C). A brief discussion is presented, how this new technique can be used to determine the Hugoniot, the equation of state, the entropy increase across the shock front, and monitor shock induced chemical reactions in real time. Received 28 October 1996 / Accepted 12 November 1996  相似文献   

4.
Wave propagation in gaseous small-scale channel flows   总被引:1,自引:0,他引:1  
The propagation and attenuation of an initial shock wave through a mm-scale channel of circular cross-section over lengths up to 2,000 diameters is examined as a model problem for the scaling of viscous effects in compressible flows. Experimental wave velocity measurements and pressure profiles are compared with existing data and theoretical predictions for shock attenuation at large scales and low pressures. Significantly more attenuation is observed than predicted based on streamtube divergence. Simulations of the experiment show that viscous effects need to be included, and the boundary layer behavior is important. A numerical model including boundary layer and channel entrance effects reproduces the wave front velocity measurements, provided a boundary layer transition model is included. A significant late-time pressure rise is observed in experiments and in the simulations.  相似文献   

5.
Laser driven shock wave transit time in thin aluminium targets was experimentally estimated by determining the shock emergence time at the rear of thin aluminium foils of varying thickness from 5 to 35 μm. A 20 J, 5 ns Nd:glass laser was focused to produce laser intensity of 1012 to 5 × 1013 W/cm2 on the targets which were placed in vacuum. Target foil movement was measured to an accuracy of 10 μm using optical shadowgraphy technique. This technique was used to accurately measure the shock transit time by recording the optical shadowgrams at various instants of time and thus identify the instant at which the foil is just set into motion. Shock transit time measured in foils of different thickness can give the value of shock velocity at a given laser intensity. Target motion recorded by shadowgraphy can also give the target foil velocity from which shock pressure can be estimated. Experimental values of shock transit time, shock velocity and shock pressure were observed to agree well with the values using one-dimensional multi-group radiation hydrodynamic simulations. PACS 52.50Jm; 52.50Lp; 52.25 Communicated by K. Takayama  相似文献   

6.
We present here experimental results in a shock wave/turbulent boundary layer interaction at Mach number of 2.3 impinged by an oblique shock wave, with a deflection angle of 9.5°, as installed in the supersonic wind tunnel of the IUSTI laboratory, France. For such a shock intensity, strong unsteadiness are developing inside the separated zone involving very low frequencies associated with reflected shock motions.The present work consists in simultaneous PIV velocity fields and unsteady wall pressure measurements. The wall pressure and PIV measurements were used to characterize the pressure distribution at the wall in an axial direction, and the flow field associated. These results give access for the first time to the spatial-time correlation between wall pressure and velocity in a shock wave turbulent boundary layer interaction and show the feasibility of such coupling techniques in compressible flows. Linear Stochastic Estimation (LSE) coupled with Proper Orthogonal Decomposition (POD) has been applied to these measurements, and first results are presented here, showing the ability of these techniques to reproduce both the unsteady breathing of the recirculating bubble at low frequency and the Kelvin–Helmholtz instabilities developing at moderate frequency.  相似文献   

7.
Broadband single pulse coherent anti-Stokes Raman scattering (CARS) experiments employing a folded box phase matching geometry in a shock tunnel flow are presented. Rovibrational spectra of molecular nitrogen, produced at the exit of a pulsed supersonic nozzle for a range of flow enthalpies, are examined. Difficulties peculiar to the application of the optical technique to a high enthalpy pulsed flow facility are discussed and measurements of flow temperatures are presented. Theoretically calculated values for temperatures based upon algorithms used to determine shock tunnel flow conditions agree well with experimental measurements using the CARS technique.  相似文献   

8.
获取光学窗口自身的高压强度特性是开展材料高压高应变率冲击响应行为精密测量和数据反演的重要基础。利用平板撞击和双屈服面法,通过冲击-卸载、冲击-再加载原位粒子速度剖面精细测量和数据反演,获得了约60 GPa范围内[100]LiF屈服强度特性随冲击压力的变化规律。结果表明:在实验压力范围内,[100]LiF的屈服强度随加载压力的提高而显著提高,压力硬化效应显著;同时,LiF在冲击加载下的屈服强度高于磁驱准等熵加载结果,应变率硬化效应强于热软化效应。采用Huang-Asay模型确定了可描述冲击加载[100]LiF强度特性的本构模型参数,为LiF在强度、相变、层断裂等加窗测量实验中的深入应用和数据准确解读提供了重要支撑。  相似文献   

9.
Supersonic flow separation in planar nozzles   总被引:3,自引:1,他引:2  
We present experimental results on separation of supersonic flow inside a convergent–divergent (CD) nozzle. The study is motivated by the occurrence of mixing enhancement outside CD nozzles operated at low pressure ratio. A novel apparatus allows investigation of many nozzle geometries with large optical access and measurement of wall and centerline pressures. The nozzle area ratio ranged from 1.0 to 1.6 and the pressure ratio ranged from 1.2 to 1.8. At the low end of these ranges, the shock is nearly straight. As the area ratio and pressure ratio increase, the shock acquires two lambda feet. Towards the high end of the ranges, one lambda foot is consistently larger than the other and flow separation occurs asymmetrically. Downstream of the shock, flow accelerates to supersonic speed and then recompresses. The shock is unsteady, however, there is no evidence of resonant tones. The separation shear layer on the side of the large lambda foot exhibits intense instability that grows into large eddies near the nozzle exit. Time-resolved wall pressure measurements indicate that the shock oscillates in a piston-like manner and most of the energy of the oscillations is at low frequency.   相似文献   

10.
Kobiera  A.  Wolanski  P. 《Shock Waves》2003,12(5):413-419
Abstract. Ignition of a liquid layer and dust fuel layer by a detonation wave propagating in hydrogen-oxygen and acetylene-oxygen mixtures is reported. Experiments were carried out using a shock tube equipped with optical-quality observation windows. A schlieren system and a high-speed camera were used for measurements of ignition delay. Pressure transducers provided data necessary for measurements of the detonation wave velocity and pressure variation within the front of the interacted detonation wave and fuel layer. Kerosene, nitroglycerin and PETN were used as fuels. Investigation shows that the layer of liquid fuel can be efficiently ignited by detonation wave. It was found that the ignition delay of the fuel layer depends mostly on the detonation wave velocity and sensitivity of igniting fuels, and slightly on the layer thickness. Received 12 August 2001 / Accepted 1 July 2002 Published online 4 February 2003 Correspondence to: P. Wolanski (e-mail: wolanski@itc.pw.edu.pl) An abridged version of this paper was presented at the 18th Int. Colloquium on the Dynamics of Explosions and Reactive Systems at Seattle, USA, from July 29 to August 3, 2001  相似文献   

11.
The objective of this work is to investigate the feasibility of intense laser-beam propagation through optical fibers for temperature and species concentration measurements in gas-phase reacting flows using coherent anti-Stokes Raman scattering (CARS) spectroscopy. In particular, damage thresholds of fibers, nonlinear effects during beam propagation, and beam quality at the output of the fibers are studied for the propagation of nanosecond (ns) and picosecond (ps) laser beams. It is observed that ps pulses are better suited for fiber-based nonlinear optical spectroscopic techniques, which generally depend on laser irradiance rather than fluence. A ps fiber-coupled CARS system using multimode step-index fibers is developed. Temperature measurements using this system are demonstrated in an atmospheric pressure, near-adiabatic laboratory flame. Proof-of-concept measurements show significant promise for fiber-based CARS spectroscopy in harsh combustion environments. Furthermore, since ps-CARS spectroscopy allows the suppression of non-resonant background, this technique could be utilized for improving the sensitivity and accuracy of CARS thermometry in high-pressure hydrocarbon-fueled combustors.  相似文献   

12.
M = 2.25 shock‐wave/turbulent‐boundary‐layer interactions over a compression ramp for several angles (8, 13 and 18°) at Reynolds‐number Re=7 × 103 were simulated with three low‐Reynolds second‐moment closures and a linear low‐Reynolds standard k–ε model. A detailed assessment of the turbulence closures by comparison with both mean‐flow and turbulent experimental quantities is presented. The Reynolds‐stress model which is wall‐topology free and which uses an optimized redistribution closure, is in good agreement with experimental data both for wall‐pressure and mean‐velocity profiles. Detailed analysis of three components of the Reynolds‐stress tensor (comparison with measurements and transport‐equation budgets) provides a critical evaluation of full Reynolds‐stress models for the separated supersonic compression ramp. The discrepancy observed in the shock‐wave foot region, between computations and measurements for the Reynolds‐stresses profiles, could be explained by considering the experimental shock‐wave oscillation and directions for future modelling work are indicated. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
白春华 《爆炸与冲击》1989,9(3):199-205
本文应用拉氏量计和拉氏分析技术研究了,两种常用的复合推进剂(聚硫和丁羟复合推进剂)的冲击波起爆和爆轰过程。在冲击波起爆过程中,压力等参量出现双峰现象,化学反应由三个阶段完成。在爆轰过程中,反应区宽度5mm以上,属于非理想爆轰过程。最后基于组分实验结果,进一步分析了复合推进剂,在冲击波作用下的化学反应过程,结果表明,双峰现象和多反应阶段的出现是由于高氯酸铵和粘合剂之间的相互作用的结果。  相似文献   

14.
The stability of hypersonic viscous gas flow in a shock layer in the neighborhood of a flat plate is considered. The stability of the velocity, temperature, density, and pressure profiles calculated on the basis of the complete viscous shock layer equations is investigated within the framework of the linear stability theory with allowance for the shock wave relations. The calculated perturbation growth rates and phase velocities are compared with the experimental data obtained by means of electron-beam fluorescence.  相似文献   

15.
A new shock tube facility with a 30.5 cm (1 ft) inside diameter is currently in operation that allows for high-spatial-resolution measurements of compressible turbulence. Small scales of turbulence behave very differently from large scales when they interact with shock or expansion waves. Highly resolved measurements can provide new information on the interaction at small scales. Another notable characteristic of the present facility is the ability to control the flow velocity behind the reflected shock through the porosity of the reflecting wall. Tests showed good flow quality with sufficiently long observation times. Measurements of piecewise average skin friction over short segments of the tube indicated strong viscous effects very close to the diaphragm where the shock is developing. The skin friction and the shock propagation speed virtually remained constant inside the working section of the shock tube in all investigated flow cases, even in low Mach number cases where viscous effects are stronger. The experimental results are compared with numerical simulations, including the effects of the reflecting porous wall and viscous effects.  相似文献   

16.
黄萧  于鑫 《力学学报》2017,49(5):1145-1153
相比气体,固体介质在高压下的状态方程更为复杂,形式也多种多样.现有关于固体介质中激波反射的理论研究,一般直接采用某种状态方程,缺乏对采用不同状态方程得到的结果的对比.本项工作采用激波极曲线的理论分析方法,选择4种不同组合形式的状态方程(一次冲击激波采用线性的冲击波速度与粒子速度关系式,二次冲击激波采用Gr(u|¨)neisen状态方程;一次冲击和二次冲击激波均采用冲击波速度与粒子速度关系式:一次冲击激波采用线性冲击波速度与粒子速度关系式,二次冲击激波采用刚性气体状态方程;以及一次冲击激波和二次冲击激波均采用刚性气体状态方程),研究固体介质中的斜激波反射,比较了采用不同组合形式的状态方程对反射激波波后压力的影响.利用量纲分析方法讨论了简化状态方程达到较高精度的条件.此外,用ANSYS/LS-DYNA软件,对激波极曲线理论给出的结果进行了验证.本项工作可为固体介质中激波反射问题状态方程的选取提供一定的指导.  相似文献   

17.
Y. Onishi 《Shock Waves》1991,1(4):293-299
The flow fields associated with the interaction of a normal shock wave with a plane wall kept at a constant temperature were studied based on kinetic theory which can describe appropriately the shock structure and its reflection process. With the use of a difference scheme, the time developments of the distributions of the fluid dynamic quantities (velocity, temperature, pressure and number density of the gas) were obtained numerically from the BGK model of the Boltzmann equation subject to the condition of diffusive-reflection at the wall for several cases of incident Mach number:M 1=1.2, 1.5, 2.0, 3.0, 4.0, 5.0 and 6.0. The reflection process of the shocks is shown explicitly together with the resulting formation of the flow fields as time goes on. The nonzero uniform velocity toward the wall occurring between the viscous boundary layer and the reflected shock wave is found to be fairly large, the magnitude of which is of the order of several percent of the velocity induced behind the incident shock, decreasing as the incident Mach number increases. It is also seen that a region of positive velocity (away from the wall) within the viscous boundary layer manifests itself in the immediate vicinity of the wall, which is distinct for larger incident Mach numbers. Some of the calculated density profiles are compared with available experimental data and also with numerical results based on the Navier-Stokes equations. The agreement between the three results is fairly good except in the region close to the wall, where the difference in the conditions of these studies and the inappropriateness of the Navier-Stokes equations manifest themselves greatly in the gas behavior.This article was processed using Springer-Verlag TEX Shock Waves macro package 1990.  相似文献   

18.
The paper reports on the nonintrusive, simultaneous measurement of velocity and temperature fluctuations in a turbulent jet diffusion flame. Velocity fluctuations were measured using laser Doppler anemometry (LDA), whereas coherent anti-Stokes Raman spectroscopy (CARS) was used for temperature measurements. The simultaneous measurements were affected by both density bias and velocity bias because the LDA imposed a form of biased sampling on the CARS. The measured velocity-temperature correlation coefficients indicated that the gradient-diffusion hypothesis is reasonably accurate for the radial direction. However, for the axial direction the gradient diffusion hypothesis is accurate only in the central region of the flame, while countergradient diffusion is found in the outer region.  相似文献   

19.
用组合式电磁粒子速度计研究JOB-9003炸药的冲击起爆过程   总被引:1,自引:0,他引:1  
用组合式电磁粒子速度计研究了JOB-9003炸药在不同冲击压力下的起爆过程。粒子速度计所测波形较好地反映出了炸药中冲击波向爆轰波的转变过程。对冲击波跟踪器所测波形的分析表明,冲击压力为4.9 GPa时,JOB-9003炸药冲击转爆轰的距离和时间分别为xD=6.06 mm和tD=1.13 s,当冲击压力增加到 5.8 GPa时,转爆轰的距离和时间减小为xD=5.66 mm和tD=1.01 s。  相似文献   

20.
熊壮  王苏  张灿  俞鸿儒 《力学学报》2019,51(1):85-93
利用单脉冲激波管对碳氢燃料JP-10在1150~1300K条件下的高温热裂解特性进行了实验研究,采用气相色谱法分析热裂解产物并获得了热裂解速率系数.主要裂解产物有乙烯、乙炔、丙烯、丁烯、1,3-丁二烯、环戊二烯、环戊烯、苯、甲苯,以及少量的甲烷、乙烷、二甲苯和甲基环戊烯.将每次激波管实验后所有产物浓度累加, JP-10裂解速率系数由实验测定.为了消除激波运行中非理想性和边界层效应导致反应温度确定的误差,采用对比速率法确定裂解温度,即在反应物中加入少量热解速率已知的内标物,根据内标物在相同的激波管实验条件下的裂解程度确定反应温度.根据内标物裂解量确定的激波管裂解反应温度通常小于采用传统测量激波速度由激波关系计算的反射激波后5区温度.在1200~1300K之间两种方法得到的温度吻合得较好,差异在20K以内,随着温度升高,两者差异增大.在实验研究的基础上,依据San Diego Mechanism对JP-10高温裂解过程进行了动力学模拟.结果显示:主要裂解产物中乙烯、乙炔和1,3-丁二烯产量随温度变化的实验值与San Diego Mechanism的模拟结果有很好的一致性,但环戊烯产量的实验值比模拟值高很多,预示JP-10裂解中完全开环和部分开环反应都是重要的裂解通道.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号