首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interaction of CO with K-FER zeolite was investigated by a combination of variable-temperature IR spectroscopy and computational study. Calculations were performed using omega(CO)/r(CO) correlation method in combination with a periodic density functional theory model. On the basis of agreement between experimental and calculated results, the following carbonyl complexes were identified: (i) mono- and dicarbonyl C-down complexes on single K(+) sites characterized by IR absorption bands at 2163 and 2161 cm(-1), respectively; (ii) complexes formed by CO bridging two K(+) ions separated by about 7-8 A (dual sites) characterized by a band at 2148 cm(-1); and (iii) isocarbonyl (O-down) complexes characterized by a band at 2116 cm(-1). The bridged carbonyl complexes on dual K(+) sites are about 5 kJ/mol more stable than monodentate (monocarbonyl) CO complexes. The C-O stretching frequency of monocarbonyl species in K-FER depends on K(+) location in the zeolite, and not on K(+) coordination to the framework. A combination of theoretical calculations using a periodic density functional model and experimental results showed formation of two types of monocarbonyls. The most abundant type appears at 2163 cm(-1), and the less abundant one at 2172 cm(-1). These experimentally determined wavenumber values coincide, within +/-2 cm(-1), with those derived from theoretical calculations.  相似文献   

2.
Nature and population of Li+ cationic sites in MCM-22 zeolite and its pillared form (MCM-36) were investigated by means of adsorption of CO as a probe molecule. CO stretching frequency and adsorption heat were measured by FTIR spectroscopy and adsorption microcalorimetry. Intrazeolitic carbonyl complexes on Li+ cations in MCM-22 and MCM-36 are characterized by two main vibrational bands at 2,195 and 2,188 cm?1. Band at higher wavenumbers is ascribed to carbonyls on Li+ ions coordinated only to two oxygen atoms at the intersection of 10-ring channels and interacting with CO molecule by energy around 45 kJ mol?1. Band at 2,188 cm?1 was assigned to the carbonyls on Li+ cations located on top of 5 or 6-rings on the channel walls and coordinated to three or four oxygen atoms, interacting with CO molecule by energy 33–36 kJ mol?1. Effect of pillaring and layered form of zeolite on nature and population of Li+ cationic sites is also discussed, as well as the formation of dicarbonyl complexes.  相似文献   

3.
The adsorption of CO on Al2O3- and SiO2-supported Ru catalysts has been investigated through FTIR spectroscopy. Deconvolution of the spectra obtained reveals the presence of 11 distinct bands in the case of Ru/Al2O3 and 10 bands in the case of Ru/SiO2, which were assigned to different carbonyl species adsorbed on reduced as well as partially oxidized Ru sites. Although most of these bands on both supports are similar, they exhibit substantial differences in terms of stability. In general, the analogous CO species on Ru/Al2O3 are adsorbed stronger than those on Ru/SiO2, with the most stable species observed being a dicarbonyl adsorbed on metallic Ru (i.e., Ru0(CO)2). Following sintering of the Ru, the ratio of multicarbonyl to monocarbonyl adsorption is reduced substantially because of the lack of isolated sites or small Ru clusters that enable the formation of multicarbonyl species via oxidative disruption. Finally, in the presence of O2, the main features observed correspond to monocarbonyl, dicarbonyl, and tricarbonyl species adsorbed on partially oxidized Run+. The intensities of all bands decrease drastically at temperatures above 210 degrees C because of the onset of CO oxidation, which results in substantially reduced surface coverage.  相似文献   

4.
5.
Interactions of the CO and NO molecules with the Cu(II) and Cu(I) isolated sites on the amorphous silica surface are investigated by means of density functional theory (DFT) methods within the finite cluster model approach. The clusters of silica of increasing nT size (T = Si) are used, with n from 2 to 6. The Cu(II) sites are characterized by calculated g-tensors and hyperfine coupling constants (HFCCs) and compared with experiment. On this basis, the three-coordinated complexes are the most plausible. Due to the charge transfer from the silica "ligand", the metal charge shrinks and the spin density is distributed over silanol and siloxy groups up to 50%. The reduced sites are exclusively two-coordinated. Strong interaction of CO with Cu(I)-nT sites (31-39 kcal/mol) gives rise to the formation of carbonyl adducts with planar coordination around copper. The population of the ligand pi system shifts downward the stretching frequency in agreement with experiment. Reaction with a second CO molecule gives a geminal dicarbonyl of very uniform structure independent of the site. Carbonyl complexes with Cu(II) are less stable and of tetrahedral coordination of the metal. Accumulation of the positive charge on the complex along with sigma overlap with d orbitals locates the calculated CO stretching frequency above free molecule value. NO molecule is preferably bound to the Cu(II)-nT sites, forming a tetrahedral complex with tilted adsorbate and NO stretching frequency blue-shifted with respect to the free molecule value. The full set of electron paramagnetic resonance (EPR) parameters and vibrational frequencies for the copper(I) mononitrosyl, {CuNO}(11), though not observed experimentally, are predicted and compared to the same magnetophore inside the ZSM-5 zeolite. The interaction energies show that in the CO/NO reaction mixture adsorption is selective and allows discrimination between Cu(I) and Cu(II) sites. However, for the Cu(I) complex, formation of mixed-ligand structures of the {Cu(CO)(NO)}(11) type is possible.  相似文献   

6.
A time-resolved FT-IR technique combined with an isotopic tracer method has been applied to study CO adsorbates on Cu(+) ions in copper ion-exchanged zeolites. Three kinds of monocarbonyl species were found to adsorb strongly on Cu-zeolite samples after admission and subsequent evacuation of gas phase CO at room temperature. Their absorption bands were observed at 2146-2160, 2128-2150, and 2097-2129 cm(-1), respectively, dependent on the zeolite structures. In the presence of gaseous CO, the monocarbonyl species at 2146-2160 cm(-1) (so called nonclassical [Cu(CO)](+) complexes) could react with a CO molecule to form a dicarbonyl species [Cu(CO)(2)](+) with nu(sym) bands at 2169-2180 cm(-1). The reactivity of the nonclassical [Cu(CO)](+) complexes was dependent on the zeolite structures, ferrierite > mordenite > ZSM-5 > X-type left harpoon ovet right harpoon offretite/erionite left harpoon ovet right harpoon Y-type > L-type. The remaining two types of monocarbonyl species have little been affected by gas phase CO.  相似文献   

7.
Periodic DFT and combined quantum mechanics/interatomic potential function (QM-pot) models were used to describe the interaction of CO with the Cu+ sites in FER. The CO stretching frequencies were calculated using omega(CO)(CCSD(T))/r(CO)(DFT) scaling method relating frequencies determined using a high-level quantum-chemical (coupled clusters) method for simple model carbonyls to CO bond lengths calculated using periodic DFT and QM-pot methods for the Cu+-zeolite system. Both periodic DFT and QM-pot models together with omega(CO)/r(CO) scaling describe the CO stretching dynamics with the "near spectroscopic accuracy", giving nu(CO) = 2156 cm(-1) in excellent agreement with experimental data. Calculations for various Cu+ sites in FER show that both types of Cu+ sites in FER (channel-wall sites and intersection sites) have the same CO stretching frequencies. Thus, the CO stretching frequencies are not site-specific in the CO/Cu+/FER system. The convergence of the results with respect to the model size was analyzed. When the same exchange-correlation functional is used the adsorption energies from periodic DFT and QM-pot are in good agreement (about 2 kcal/mol difference) but substantially larger than those of the experiment. The adsorption energy calculated with the B3LYP functional agrees with available experimental data. The overestimation of the adsorption energy in DFT calculations (periodic or QM-pot) is related to a red-shift of the CO stretching mode, both result from an underestimation of the HOMO(5sigma)-LUMO(2pi) gap of CO and the consequent overestimation of the Cu(+)(d)-CO(2pi*) back-donation. For the adsorption energy, this can be overcome by the use of hybrid B3LYP exchange-correlation functional. For the frequency calculations, the DFT problem can be overcome by the use of the omega(CO)(CCSD(T))/r(CO)(DFT) correlation.  相似文献   

8.
YBa2Cu3Ox(x=6-7)薄膜被合成在YSZ基底上,用FTIR,XPS,XRD等手段原位研究CO在薄膜上的吸附及加氢行为。CO吸附在Cu位置上,与YBCO体相中的O作用,生成表面CO2或-COO基团,导致YBCO中生产氧空位,使YBCO发生昌型转变,Cu^2+被还原为Cu^+或Cu^0.YBCO中的氧空位有利于CO、CO2及H2的吸附。CO、CO2在YBCO膜上的加氢产物为CH3OH、CH3  相似文献   

9.
Thee adsorption of CO and NO on copper ion-exchanged zeolite Beta was investigated using IR method.It was found that the thermalvacuum pretreatment procedure could result in the reduction of Cu2 ions in zeolite Beta.The adsorption of CO on Cu sites in zeolite Beta closely follows Langmuir isotherm.Another Cu species may form during the reaction between water and CO.The catalytic decomposition of NO on the zeolite was observed at room temperature,indicating that the decomposition reaction may occur between two coordinated NO ligands of the same dinitrosyhc complex.Furthermore,the appearance of two series of NO adsorption bands reveals that copper ions existing at different cation sites may have different effect on the adsorption and decomposition of NO molecules.  相似文献   

10.
Adsorption of CO on gold supported in zeolite NaY at 85 K led to the formation of (i) various carbonyls and isocarbonyls typical of the zeolite and (ii) carbonyls formed at cationic gold sites (observed in the 2186-2171 cm(-1) region). Analysis of the behavior of the bands allows their assignment to carbonyls of Au(3+) ions. At temperatures higher than 220 K, CO adsorption led to the formation of a new type of Au(3+)-CO species (2207 cm(-1)). Once formed, these complexes could be transformed into the dicarbonyls Au(3+)(CO)(2) when the sample was cooled to 85 K in the presence of CO. The results are explained by migration of Au(3+) ions to more accessible positions within the zeolite at increasing temperatures. When a CO molecule is already adsorbed, it stabilizes the Au(3+) ion in the new position, and a second CO molecule can be coordinated, thus forming a geminal species. These results are the first evidence of Au(3+)(CO)(2) complexes.  相似文献   

11.
The Cu(I)-NO adsorption complexes were formed over copper exchanged and autoreduced high siliceous Cu-ZSM-5 and Cu-MCM-22 zeolites and studied by EPR spectroscopy at X-, Q-, and W-band frequencies. The spin Hamiltonian parameters of the Cu(I)-NO species are indicative of a nitrogen-centered radical complex with a bent geometry and a significant contribution of the Cu(I) 4s atomic orbital to the wave function of the unpaired electron. Two different Cu(I)-NO species were found in both zeolites. It has been confirmed by comparing the experimental data with the results of previous theoretical studies that the presence of two different species is due to the formation of Cu(I)-NO adsorption complexes from two different Cu(I) sites in the zeolite matrix with different numbers of oxygen coligands. The structure of the two sites in the Cu-ZSM-5 and Cu-MCM-22 zeolites must be similar as the spin Hamiltonian parameters are found to be almost independent of the zeolite matrix, where the Cu(I)-NO complex is formed. The EPR signal intensity of the Cu(I)-NO species was studied as a function of the NO loading, and the formation of diamagnetic Cu(I)-(NO)(2) species with rising NO pressure at the expense of paramagnetic Cu(I)-NO monomers could be demonstrated for both systems at low temperatures.  相似文献   

12.
The low temperature adsorption of CO and the room temperature adsorption of propionitrile and ortho-toluonitrile on LiMOR, NaMOR, KMOR and CsMOR zeolites have been investigated by FT-IR spectroscopy. Two different CO species, both most probably located in the main channels coordinated on Na ions at IV and VI sites, have been observed. They are associated to a shift of the CO stretching to higher frequencies, as usual. However, together, more strongly bonded species associated to a slight shift of the CO stretching to a lower frequency are also observed. Similar species, with the CN stretching shifted upwards (weaker adsorption) and with the CN stretching shifted downwards (stronger adsorption) are also observed in the case of the interaction of propionitrile (PrN), a molecule that should enter the main channels, and in the case of the interaction of ortho-toluonitrile (o-TN), whose access to the main channels should be highly hindered. The data show that the species characterized by a stronger adsorption but a lower stretching frequency may form both in the main channels and at the external surface. Their formation is easier with the larger cations. These species are identified as "multiply bonded", possibly to two cations. The evidence for this new interaction, stronger than the usual one site-one molecule species, may change considerably the view of the adsorption chemistry of cationic zeolites, from localized simple sites to cooperative complex interactions.  相似文献   

13.
Adsorption behavior of copper and cyanide ions at TiO2-solution interface   总被引:2,自引:0,他引:2  
Adsorption of both copper and cyanide ions in the absence and in the presence of their complexes at TiO2-solution interfaces was investigated. The objective of this study was to demonstrate the possibility of removing heavy metal ions, exemplified by Cu(II), from aqueous solution in the presence of a ligand, e.g., CN-. Several parameters such as pH and Cu(II) and CH- ion concentration that may affect the magnitude of copper and cyanide adsorption were studied. The equilibrium of Cu-CN speciation distribution in solution and stability constant calculations have been investigated to determine the adsorption behavior of Cu(II). Results revealed that free Cu(II) ions (in the absence of CN-) were completely separated at pH8, while the adsorption of free cyanide ions, in the absence of Cu(II), reached a maximum value of 48% at pH 7. For Cu-CN complexes, the presence of CN- in excessive amount with respect to Cu(II) retarded the adsorption of Cu(II). This is attributed to the formation of multivalent anionic cyano-copper complexes such as Cu(CN)2-(3) and Cu(CN)(3-)4.  相似文献   

14.
Two equivalents of acetylacetonate (acac) have been successfully introduced into a monomeric tungsten(II) coordination sphere. With the tetracarbonyltriiodotungsten(II) anion as a precursor, the formation of a tungsten(II) bis(acac) tricarbonyl complex, W(CO)3(acac)2, 1, has been accomplished. The addition of PMe3 or PMe2Ph to tricarbonyl complex 1 formed tungsten(II)bis(acac)dicarbonylphosphine complexes 2a and 2b, respectively. Single-crystal X-ray diffraction studies of the parent tricarbonyl complex, 1, and dicarbonyl trimethylphosphine complex 2a confirmed seven-coordinate geometries for both complexes. Variable-temperature 1H and 13C{1H} NMR spectroscopy revealed fluxional behavior for these seven-coordinate molecules: rapid exchange of the three carbon monoxide ligands in 1 was observed, and movement of the phosphine ligand through a mirror plane in a C(S) intermediate species was observed for both 2a and 2b. Tricarbonyl complex 1 reacted readily with alkyne reagents to form bis(acac)monocarbonylmonoalkynetungsten(II) complexes 3a (PhC(triple bond)CH) and 3b (MeC(triple bond)CMe). Variable-temperature 1H NMR spectroscopy was used to probe rotation of the alkyne ligand in 3a and 3b. The introduction of two alkyne ligands was accomplished thermally using excess PhC(triple bond)CPh to form bis(alkyne) complex 4 which was characterized crystallographically, as well as by 1H and 13C NMR spectroscopy. The availability of W(CO)3(acac)2 as a source of the W(acac)2 d4 moiety lies at the heart of the chemistry reported here.  相似文献   

15.
The bonding and vibrational properties of Pd(CO) and Pd(CO)(2) complexes formed at the (100) surface of MgO have been investigated using the gradient-corrected DFT approach and have been compared to the results of infrared and thermal desorption experiments performed on ultrathin MgO films. Two complementary approaches have been used for the calculation of the electronic properties: the embedded cluster method using localized atomic orbital basis sets and supercell periodic calculations using plane waves. The results show that the two methods provide very similar answers, provided that sufficiently large supercells are used. Various regular and defect adsorption sites for the Pd(CO) and Pd(CO)(2) have been considered: terraces, steps, neutral and charged oxygen vacancies (F and F(+) centers), and divacancies. From the comparison of the computed and experimental results, it is concluded that the most likely site where the Pd atoms are stabilized and where carbonyl complexes are formed are the F(+) centers, paramagnetic defects consisting of a single electron trapped in an anion vacancy.  相似文献   

16.
CO adsorption on Pd atoms deposited on MgO(100) thin films has been studied by means of thermal desorption (TDS) and Fourier transform infrared (FTIR) spectroscopies. CO desorbs from the adsorbed Pd atoms at a temperature of about 250 K, which corresponds to a binding energy, E(b), of about 0.7 +/- 0.1 eV. FTIR spectra suggest that at saturation two different sites for CO adsorption exist on a single Pd atom. The vibrational frequency of the most stable, singly adsorbed CO molecule is 2055 cm(-)(1). Density functional cluster model calculations have been used to model possible defect sites at the MgO surface where the Pd atoms are likely to be adsorbed. CO/Pd complexes located at regular or low-coordinated O anions of the surface exhibit considerably stronger binding energies, E(b) = 2-2.5 eV, and larger vibrational shifts than were observed in the experiment. CO/Pd complexes located at oxygen vacancies (F or F(+) centers) are characterized by much smaller binding energies, E(b) = 0.5 +/- 0.2 or 0.7 +/- 0.2 eV, which are in agreement with the experimental value. CO/Pd complexes located at the paramagnetic F(+) centers show vibrational frequencies in closest agreement with the experimental data. These comparisons therefore suggest that the Pd atoms are mainly adsorbed at oxygen vacancies.  相似文献   

17.
The effect of aspartic acid on the adsorption of Pb(II), Cu(II), Zn(II), Co(II), and Mn(II) on kaolinite at 25 degrees C in the presence of 5 mM KNO3 was investigated by means of potentiometric titrations and adsorption measurements over a range of pH and concentration. Data were modeled by extended constant capacitance models. Aspartic acid slightly enhanced the adsorption of Pb(II), Zn(II), and Co(II) at low pH, but inhibited the adsorption of all the metal ions at higher pH. Adsorption of Cu(II) and Co(II) was inhibited strongly. Because aspartic acid is adsorbed only weakly by kaolinite, inhibition of metal ion adsorption depends on the ability of aspartic acid to form complexes with the various metal ions together with the adsorption characteristics of these complexes. In particular suppression of adsorption at high pH arises from competition between surface sites and dissolved aspartate ions for the available metal ions. Cu(II) and Co(II) form complexes with aspartic acid more strongly than the other metals. As these complexes do not adsorb, Cu(II) and Co(II) suffer greater suppression from aspartic acid than the other metals. There was no evidence of adsorption of aspartic acid complexes to the permanently charged kaolinite faces.  相似文献   

18.
We have carried out first principles plane wave density-functional theory calculations to study the adsorption of CO molecule on a clean and unreconstructed Cu (110) surface at 1/12 monolayer coverage and have investigated the subsequent oxidation by preadsorbed oxygen atoms. As found experimentally, the CO adsorbs perpendicular to the surface plane through the carbon atom; the top site was found to be the most favorable position for CO adsorption although the short-bridge site is only slightly less stable. Surprisingly, for a sparely oxidized surface with O atoms adsorbed in hollow sites the coadsorption energy is slightly negative for only the above two CO sites which have therefore been used as starting points to explore the energy surface of the oxidation reaction. We have confirmed the existence of bent CO(2) surface intermediate as previously suggested from experimental studies. Using the nudged elastic band method, we have characterized a two step reaction which involves the formation of this intermediate. The results suggest that the rate determining step of the oxidation reaction is the formation of the intermediate and the energy barrier (200 meV) is close to although smaller than experimentally estimated values.  相似文献   

19.
Copper ion-exchanged ZSM5 zeolites have been prepared with different cooper loadings from under- to over-exchanged levels. The adsorptions of N2O and CO at 303 K have been studied using calorimetric method and infrared spectroscopy. The samples were additionally characterised by ammonia adsorption at 423 K. The active sites for both N2O and CO are Cu(I) ions, which were formed as a result of pre-treatment in vacuum at 673 K.

Room temperature adsorption of nitrous oxide at low equilibrium pressures (up to 66.7 Pa) resulted in small amounts of chemisorbed N2O (<0.2 molecule per one Cu ion). Differential heats of N2O adsorption between 80 and 30 kJ/mol were obtained. Differential heats of CO adsorption between 140 and 40 kJ/mol were obtained. The obtained amounts of chemisorbed species in the investigated systems and the values of differential heats of both nitrous oxide and carbon monoxide demonstrate the dependence on the copper content.  相似文献   


20.
Photolysis of carboxamides of the dendrite structure with aminomethyland 1-aminoethylcymantrenes leads to the formation of six-membered dicarbonyl chelates with the Mn—O bond which are stable in solutions. The chelates in the reversed dark reaction with carbon monoxide give the starting tricarbonyl complexes. The formation of the chelates and their dark reaction are accompanied by the reversible change of color by the compounds. The rate determining step of the thermal reaction of chelates with CO is a chelate ring opening with the ligand substitution by the SN1 mechanism. A possibility of solvent-free photoinduced ligand-exchange reaction in a number of cymantrene derivatives was demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号