首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report small angle x-ray scattering data demonstrating the direct experimental microscopic observation of the small-to-large crossover behavior of hydrophobic effects in hydrophobic solvation. By increasing the side chain length of amphiphilic tetraalkyl-ammonium (C(n)H(2n+1))(4)N(+) (R(4)N(+)) cations in aqueous solution we observe diffraction peaks indicating association between cations at a solute size between 4.4 and 5 A?, which show temperature dependence dominated by hydrophobic attraction. Using O K-edge x-ray absorption we show that small solutes affect hydrogen bonding in water similar to a temperature decrease, while large solutes affect water similar to a temperature increase. Molecular dynamics simulations support, and provide further insight into, the origin of the experimental observations.  相似文献   

2.
We present a coarse-grained lattice model of solvation thermodynamics and the hydrophobic effect that implements the ideas of Lum-Chandler-Weeks theory [J. Phys. Chem. B 134, 4570 (1999)] and improves upon previous lattice models based on it. Through comparison with molecular simulation, we show that our model captures the length-scale and curvature dependence of solvation free energies with near-quantitative accuracy and 2-3 orders of magnitude less computational effort, and further, correctly describes the large but rare solvent fluctuations that are involved in dewetting, vapor tube formation, and hydrophobic assembly. Our model is intermediate in detail and complexity between implicit-solvent models and explicit-water simulations.  相似文献   

3.
Preferential solvation of polymer molecules and strong EPD-EPA (EPD, electron pair donor; EPA, electron pair acceptor) interaction between solvent and nonsolvent molecules were found to be of great significance in the fabrication of two kinds of aromatic polyimide (AP) nanoparticles. Surfactant free yet stable AP nanoparticles were prepared using a liquid-liquid phase separation method. The stability of the AP nanoparticles can be achieved by the solvation multilayer resulting from a solvation stabilization chain in the form of nonsolvent --> solvent --> AP (a --> b denotes that component b is solvated by component a). The significance of this stabilization chain was identified by many comparative experiments using different types of molecular probes. On the other hand, the formation of AP nanoparticles was found to be governed by a nucleation process and therefore the particle size is controlled by the nucleation rate. A very high level of supersaturation can be attained under the intensive local motions induced by ultrasound, resulting in a very high nucleation rate. This effect was found to be extremely useful in the fabrication of sub-50 nm AP nanoparticles.  相似文献   

4.
The experimentally well-known convergence of solvation entropies and enthalpies of different small hydrophobic solutes at universal temperatures seems to indicate that hydrophobic solvation is dominated by universal water features and not so much by solute specifics. The reported convergence of the denaturing entropy of a group of different proteins at roughly the same temperature as hydrophobic solutes was consequently argued to indicate that the denaturing entropy of proteins is dominated by the hydrophobic effect and used to estimate the hydrophobic contribution to protein stability. However, this appealing picture was subsequently questioned since the initially claimed universal convergence of denaturing entropies holds only for a small subset of proteins; for a larger data collection no convergence is seen. We report extensive simulation results for the solvation of small spherical solutes in explicit water with varying solute-water potentials. We show that convergence of solvation properties for solutes of different radii exists but that the convergence temperatures depend sensitively on solute-water potential features such as stiffness of the repulsive part and attraction strength, not so much on the attraction range. Accordingly, convergence of solvation properties is only expected for solutes of a homologous series that differ in the number of one species of subunits (which attests to the additivity of solvation properties) or solutes that are characterized by similar solute-water interaction potentials. In contrast, for peptides that arguably consist of multiple groups with widely disperse interactions with water, it means that thermodynamic convergence at a universal temperature cannot be expected, in general, in agreement with experimental results.  相似文献   

5.
The differential solubility of polar and apolar groups in water is important for the self-assembly of globular proteins, lipid membranes, nucleic acids, and other specific biological structures through hydrophobic and hydrophilic effects. The increase in water's heat capacity upon hydration of apolar compounds is one signature of the hydrophobic effect and differentiates it from the hydration of polar compounds, which cause a decrease in heat capacity. Water structuring around apolar and polar groups is an important factor in their differential solubility and heat capacity effects. Here, it is shown that joint radial/angular distribution functions of water obtained from simulations reveal quite different hydration structures around polar and apolar groups: polar and apolar groups have a deficit or excess, respectively, of "low angle hydrogen bonds". Low angle hydrogen bonds have a larger energy fluctuation than high angle bonds, and analysis of these differences provides a physical reason for the opposite changes in heat capacity and new insight into water structure around solutes and the hydrophobic effect.  相似文献   

6.
Picosecond and femtosecond X-ray absorption spectroscopy is used to probe the changes of the solvent shell structure upon electron abstraction of aqueous iodide using an ultrashort laser pulse. The transient L(1,3) edge EXAFS at 50 ps time delay points to the formation of an expanded water cavity around the iodine atom, in good agreement with classical and quantum mechanical/molecular mechanics (QM/MM) molecular dynamics (MD) simulations. These also show that while the hydrogen atoms pointed toward iodide, they predominantly point toward the bulk solvent in the case of iodine, suggesting a hydrophobic behavior. This is further confirmed by quantum chemical (QC) calculations of I(-)/I(0)(H(2)O)(n=1-4) clusters. The L(1) edge sub-picosecond spectra point to the existence of a transient species that is not present at 50 ps. The QC calculations and the QM/MM MD simulations identify this transient species as an I(0)(OH(2)) complex inside the cavity. The simulations show that upon electron abstraction most of the water molecules move away from iodine, while one comes closer to form the complex that lives for 3-4 ps. This time is governed by the reorganization of the main solvation shell, basically the time it takes for the water molecules to reform an H-bond network. Only then is the interaction with the solvation shell strong enough to pull the water molecule of the complex toward the bulk solvent. Overall, much of the behavior at early times is determined by the reorientational dynamics of water molecules and the formation of a complete network of hydrogen bonded molecules in the first solvation shell.  相似文献   

7.
We present a novel technique, based on the principle of maximum entropy, for deriving the solvation energy parameters of amino acids from the knowledge of the solvent accessible areas in experimentally determined native state structures as well as high quality decoys of proteins. We present the results of detailed studies and analyze the correlations of the solvation energy parameters with the standard hydrophobic scale. We study the ability of the inferred parameters to discriminate between the native state structures of proteins and their decoy conformations.  相似文献   

8.
There are many forces that contribute to the stability of a protein; among these are dispersion interactions, hydrogen bonding, and solvation effects. In a recent work, Vondrasek et al. estimated the in vacuo stabilization energy of the hydrophobic core of the protein rubredoxin using high level ab initio methods (Vondrasek, J.; et al. J. Am. Chem. Soc. 2005, 127, 2615). In this work, we evaluate the effects of solvation on the stability of the hydrophobic core of this protein. Solvation calculations are made using the polarizable continuum method at the MP2/aug-cc-pVDZ level of theory. It is found that, in a protein-like environment (mimicked by a continuum solvent with a dielectric constant of approximately 4), the stability of rubredoxin's hydrophobic core is decreased by 40-50%. We also observed that the stabilization energy of the hydrophobic core is only slightly lower in a protein-like medium than in an aqueous one (DeltaGether-DeltaGwater approximately 1.0-3.5 kcal/mol).  相似文献   

9.
Classical molecular dynamics simulations with many-body potentials were carried out to quantitatively determine the effect of NaCl salt concentration on the aqueous solvation and surface concentration of hydroxyl radicals. The potential of mean force technique was used to track the incremental free energy of the hydroxyl radical from the vapor, crossing the air-water interface into the aqueous bulk. Results showed increased NaCl salt concentration significantly enhanced hydroxyl radical solvation, which should significantly increase its accommodation on water droplets. This has been experimentally observed for ozone aqueous accommodation with increased NaI concentration, but, to our knowledge, no experimental study has probed this for hydroxyl radicals. The origin for this effect was found to be very favorable hydroxyl radical-chloride ion interactions, being stronger than those for water-chloride.  相似文献   

10.
Synthetic chemistry is hard because some reasonable looking molecules cannot be made, because there are errors in the chemical literature, because it is easy to miss reaction possibilities and because even the shape of molecules is very difficult to determine. We propose an approach to the computational analysis of reactions that tries to circumvent these difficulties, by restricting the analysis to simple rules for reactivity that can generate a large number of competing pathways. This huge ensemble is filtered using computational methods to pick out the most likely pathways, and to suggest possible products.  相似文献   

11.
We report applications of analytical formalisms and molecular dynamics (MD) simulations to the calculation of redox entropy of plastocyanin metalloprotein in aqueous solution. The goal of our analysis is to establish critical components of the theory required to describe polar solvation at the mesoscopic scale. The analytical techniques include a microscopic formalism based on structure factors of the solvent dipolar orientations and density and continuum dielectric theories. The microscopic theory employs the atomistic structure of the protein with force-field atomic charges and solvent structure factors obtained from separate MD simulations of the homogeneous solvent. The MD simulations provide linear response solvation free energies and reorganization energies of electron transfer in the temperature range of 280-310 K. We found that continuum models universally underestimate solvation entropies, and a more favorable agreement is reported between the microscopic calculations and MD simulations. The analysis of simulations also suggests that difficulties of extending standard formalisms to protein solvation are related to the inhomogeneous structure of the solvation shell at the protein-water interface combining islands of highly structured water around ionized residues along with partial dewetting of hydrophobic patches. Quantitative theories of electrostatic protein hydration need to incorporate realistic density profile of water at the protein-water interface.  相似文献   

12.
We perform molecular dynamics simulations of supercritical water (SCW) with a wide range of densities along a near critical isotherm using the simple point charge extended (SPC/E) pair potential in order to study the entropy and the solvation shell structure around a central water molecule. It is shown that both the translational and orientational two-particle correlation entropy terms can serve as the metrics of the translational-orientational structural orders in water and it is revealed that the translational structural order is very sensitive to the density variation in the gas-like and liquid-like region, while the orientational structural order is much more dependent upon compression in the medium-density SCW region. The comparison of the magnitudes of the full thermodynamic excess entropy and two-particle correlation entropy confirms the recent findings that the many-body terms other than two-body ones also present significant and non-neglectable contributions to the full excess entropy for the highly anomalous fluids like water. The analysis of entropy terms as a function of intermolecular distance and the orientational distribution functions as well as the three-dimensional spatial distribution functions indicate that the structural order occurs only in a much more diffused first solvation shell due to the elongated hydrogen bonds under supercritical conditions. It is revealed that no obvious second or higher neighbor shells occur in SCW, in contrast with the feature of normal liquid water that the anomalous decrease of translational order upon compression occurs mainly in the second shell.  相似文献   

13.
Hard-sphere mixtures provide one a solvable reference system that can be used to improve the density functional theory of realistic molecular fluids. We show how the Kierlik-Rosinberg's scalar version of the fundamental measure density functional theory of hard spheres [E. Kierlik and M. L. Rosinberg, Phys. Rev. A 42, 3382 (1990)], which presents computational advantages with respect to the original Rosenfeld's vectorial formulation or its extensions, can be implemented and minimized in three dimensions to describe fluid mixtures in complex environments. This implementation is used as a basis for defining a molecular density functional theory of water around molecular hydrophobic solutes of arbitrary shape.  相似文献   

14.
《Tetrahedron: Asymmetry》1999,10(2):265-279
A detailed computational investigation of possible activated complexes in the epoxide opening of cyclohexene oxide by a chiral lithium amide is presented. Transition states for the two routes giving (S)- and (R)-alkoxides with and without solvent have been calculated. Geometry optimizations at PM3 and HF/3-21G levels of theory, and single point calculations at B3LYP/6-31+G(d) level have been used. The experimentally obtained stereoselectivity is semi-quantitatively reproduced at all levels except PM3//PM3. The factors found to control the stereoselectivity are solvation and some non-bonded interactions other than those previously proposed.  相似文献   

15.
16.
We present a systematic test of the performance of three popular united‐atom force fields—OPLS‐UA, GROMOS and TraPPE—at predicting hydrophobic solvation, more precisely at describing the solvation of alkanes in alkanes. Gibbs free energies of solvation were calculated for 52 solute/solvent pairs from Molecular Dynamics simulations and thermodynamic integration making use of the IBERCIVIS volunteer computing platform. Our results show that all force fields yield good predictions when both solute and solvent are small linear or branched alkanes (up to pentane). However, as the size of the alkanes increases, all models tend to increasingly deviate from experimental data in a systematic fashion. Furthermore, our results confirm that specific interaction parameters for cyclic alkanes in the united‐atom representation are required to account for the additional excluded volume within the ring. Overall, the TraPPE model performs best for all alkanes, but systematically underpredicts the magnitude of solvation free energies by about 6% (RMSD of 1.2 kJ/mol). Conversely, both GROMOS and OPLS‐UA systematically overpredict solvation free energies (by ∼13% and 15%, respectively). The systematic trends suggest that all models can be improved by a slight adjustment of their Lennard‐Jones parameters. © 2016 Wiley Periodicals, Inc.  相似文献   

17.
The rate constants of the alkaline hydrolysis of 2-methylpropionic acid ethyl ester, -hydroxy, -bromo, -cyano, and -nitro-2-methylpropionic acid ethyl ester have been measured in water between 5°C and 45°C with the help of an appropriate conductance bridge developed in our laboratory. The influence of the polar substituents on the rate constant, a powerful probe for discussing two-particle interactions in solutions, is characterized by an intramolecular structure parameter of the activated complex and a dielectric parameter of its surroundings. The dependence of the reaction rate on the structure parameter is compared to that of substituted acetic acid derivatives. The smaller dielectric parameter of 2-methylpropionic acid esters reveals the increasing hydrophobic solvation in comparison to acetic acid derivatives.The 7th communication of investigations on substituent and solvent effects of solvolysis reactions.  相似文献   

18.
It is shown that the molecular surface and the accessible surface lead to exactly the same results when calculating solvation free energies and transfer free energies, from methods using the surface tension as a parameter if the exact geometric curvature is used with the accessible surface. However, the use of the exact curvature is not necessarily the best approach chemically. Other modifications, including an approximate curvature improves the approach. Such modifications are difficult to include in methods in which the molecular surface rather than the accessible surface is used to calculate solvent effects. A modification of a Gaussian curvature term is necessary if dissociation is to be accounted for properly. The inclusion of a Gaussian curvature term, in addition to the usual mean curvature term, reconciles the difference in magnitude of the microscopic and macroscopic surface tension in the case of the accessible surface area. © 1997 by John Wiley & Sons, Inc.  相似文献   

19.
Eg5, a mitotic kinesin exclusively involved in the formation and function of the mitotic spindle has attracted interest as an anticancer drug target. Eg5 is co-crystallized with several inhibitors bound to its allosteric binding pocket. Each of these occupies a pocket formed by loop 5/helix α2 (L5/α2). Recently designed inhibitors additionally occupy a hydrophobic pocket of this site. The goal of the present study was to explore this hydrophobic pocket with our MED-SuMo fragment-based protocol, and thus discover novel chemical structures that might bind as inhibitors. The MED-SuMo software is able to compare and superimpose similar interaction surfaces upon the whole protein data bank (PDB). In a fragment-based protocol, MED-SuMo retrieves MED-Portions that encode protein-fragment binding sites and are derived from cross-mining protein-ligand structures with libraries of small molecules. Furthermore we have excluded intra-family MED-Portions derived from Eg5 ligands that occupy the hydrophobic pocket and predicted new potential ligands by hybridization that would fill simultaneously both pockets. Some of the latter having original scaffolds and substituents in the hydrophobic pocket are identified in libraries of synthetically accessible molecules by the MED-Search software. Ksenia Oguievetskaia and Laetitia Martin-Chanas contributed equally to this work.  相似文献   

20.
The influence of the length of a flexible hydrophobic spacer on the selectivity of anionic dimeric surfactants was investigated. Disodium 1,omega-bis(decyloxymethyl)-dioxa alkane-1,omega disulfates with a spacer containing an ethylene, butylene, hexylene, octylene, decylene or dodecylene group were synthesized, and four of these were evaluated for use in micellar electrokinetic chromatography (MEKC) via linear solvation energy relationships (LSERs). There were no significant differences in the system constants of these surfactants, indicating that their micelles all have a very similar interface with the aqueous phase, regardless of the length of the hydrophobic spacer. Compared to sodium dodecylsulfate (SDS), these dimeric surfactants are slightly more cohesive, interact better with polarizable compounds, and are somewhat better hydrogen bond acceptors and worse hydrogen bond donors, while there is no difference in dipolarity. The critical micelle concentrations (CMCs) of these surfactants were in the order of 1mM, except for the dimeric surfactant with a spacer containing an ethylene group, which had a CMC <0.03 mM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号