首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The deactivation rate of excited pyrene by indole strongly depends on the polarity of the media. In micellar systems (Triton X-100, cetyltrimcthylammonium chloride (CTAC) and sodium dodecylsulfate (SDS) the deactivation efficiency is enhanced due to the high local concentration of indole in the micellar pseudophase. Quantitative interpretation of the data in CTAC and SDS micelles requires to take into account indole exchange between the micelles and the aqueous phase. In SDS micelles, where due to their smaller size the exchange process is more relevant, the exit and entrance rates are (3.0 ± 0.6) x 106 and (1.2 ± 0.3) x 1010 M −1s−1 respectively. Intramicellar bimolecular quenching constants are (1.1 ± 0.2) x 108 M−1 s−1 (1.4 ± 0.2) x 108 M −1 s−1 and (1.5 ± 0.2) x 108 M −1 s−1 in Triton X-100, SDS and CTAC respectively. These rates are similar to those measured in ethanol rich ethanol-water homogeneous solutions. This is in agreement with the average polarity sensed by both pyrene and indole in the micellar pseudophases.  相似文献   

2.
Abstract— The phosphorescence of alcohol dehydrogenase from horse liver (LADH) can be observed at room temperature. The quenching of this long-lived light emission, which comes from a tryptophan residue well buried within the interior of the enzyme structure, was measured. The rate constants for the quenching by the small oxygen molecule and by the I -1ion were found to be 1.4 → 108 M -1 s-1 and 108 M -1 s-1, respectively, at room temperature. The temperature dependence of the quenching yields an activation energy of about 14 kcal/mol. This activation energy and the meaning of the accompanying large pre-exponential factor in the Arrhenius equation, A = 1018 M -l s-1, are discussed in terms of a model in which the quencher threads its way through the protein network.  相似文献   

3.
The properties of a newly isolated anionic tobacco peroxidase from transgenic tobacco plants overexpressing the enzyme have been studied with respect to the chemiluminescent reaction of luminol oxidation. These were compared to the properties of horseradish peroxidase in the cooxidation of luminol and p -iodophenol, the enhanced chemiluminescence reaction. The pH, luminol and hydrogen peroxide concentrations were optimized for maximum sensitivity using the tobacco enzyme. The detection limit for the latter under the optimal conditions (2.5 m M luminol, 2 m M hydrogen peroxide, 100 m M Naborate buffer, pH 9.3) was about 0.1 p M , which is at least five times lower than that for horseradish peroxidase in enhanced chemiluminescence with p -iodophenol. The rate constants for the elementary steps of the enzyme-catalyzed reaction have been determined: k 1= 4.9 × 106 M −1 s1, k 2= 7.3 × 106 M −1 s−1, k 3= 2.1 × 106 M −1 s−1 (pH 9.3). The similarity of these rate constants is unusual for plant peroxidases. The high catalytic activity of tobacco peroxidase in the luminescent reaction is explained by the high reactivity of its Compound II toward luminol and the high stability of the holoenzyme with respect to heme dissociation. This seems to be a unique property of this particular enzyme among other plant peroxidases.  相似文献   

4.
Abstract— The influence of chloride ion on the rate of decay of triplet methylene blue in 0.01 M acid in the absence and presence of ferrous ions was investigated by means of laser flash-photolysis monitored by kinetic spectrophotometry. Chloride weakly accelerates decay of 3MBH in aqueous solution in the absence of Fe(II). Quenching of 3MBH2+ by Fe(II) is more strongly catalyzed by Cl- in both water and 50 v/v% aq. CH3CN. The uncatalyzed quenching constant, k 5, is of the order of 1 × 106 M -1 s-1 while in 4.8 M aqueous chloride ( μ – 7.2 M ) k 5= (37.2 ± 1.8) × 106 M -1 s-1. A possible role of chloride is as a bridging species in quenching via electron transfer between 3MBH2+ and Fe(II).  相似文献   

5.
Abstract— Anionic polyelectrolytes functionalized with the 5-deazaflavin group (dFl) were synthesized. The lifetime of the triplet excited dFl in the polyelectrolytes with a 2-mol% dFl content (AdFl-2) was about 10 times longer than that of a low molecular weight analog (AdFl-M). 2-Mercaptoethanol (RSH) reduced the triplet dFl with the rate constant of k red= 2.01 × 108 M −1 s−1 for AdFl-M and k red= 4.4 × 107 M −1 s−1 for AdFl-2. A zwitterionic viologen (SPV) oxidized the triplet dFl with the rate constant of k red= 3.69 × 109 M −1 s−1 for AdFl-M and k ox= 7.4 × 108 M−1 s−1 for AdFl-2. The smaller rate constants for the polymer system were discussed in terms of the hindering effect of the macromolecular microenvironment. The back electron transfer was shown to be drastically slowed in the AdFl-2-SPV system as a result of the intensive electrostatic effect of the polyelectrolytes. The buildup of the viologen radicals was studied under the steady-state illumination of the three component systems including viologen and RSH. The dFl group was demonstrated to serve as a very efficient photosensitizer in the oxidative cycle in case back electron transfer was retarded. This is the case of the AdFl-2-SPV system which gave the quantum yield of about 0.4 for the SPV buildup. By comparison, the AdFl-2-MV2+ system resulted in a much slower buildup of MV +radicals.  相似文献   

6.
Abstract— From spectroscopic data and rate constants in the literature, equilibrium constants and rates of thermal formation of singlet oxygen (1Δg and 1Σg+) were calculated for a number of conditions. For the gas phase we estimate K eq(1Δg3Σg-) = 1.67 exp(-94.31 KJ/RT) and K eq(1Σg+/3Σg-) = 0.33 exp(-157.0 KJ/RT). The calculated rate constants for the 3Σg+1Δg transition of O2 at 25°C varied from 2.5 × 10-11 s-1 in water to 4.8 × 10-16 s-1 in air, assuming equal solvent interactions with the ground and excited states. Physical quenchers for singlet oxygen are expected to be catalysts for its thermal formation. Equations are presented which allow one to estimate whether such catalysis by quenchers will result in a pro-oxidant effect.  相似文献   

7.
Abstract— Flash photolysis at 450 nm has been used to study the quenching of the excited triplet state of lumiflavin and the transient species formed in subsequent reactions in deaerated phosphate buffer (pH 6.9).
The effect of the presence of ferricyanide on the life time of triplet lumiflavin has been studied. The results suggest an energy transfer reaction without concurrent electron transfer reactions. The rate constant for the process was 2.8 times 109 M -1 s-1. The analogous reaction with ferrocyanide could not be observed because of the efficient electron transfer reaction (δG = -20.6 kcal mol-1) leading to the formation of the semireduced lumiflavin and ferricyanide. The rate constant for this reaction was 3.3 times 109 M -1 s-1. The semireduced lumiflavin radical was found to disappear in a second order reaction with a rate constant of 1.7 times 109 M -1 s-1. It was found to react with ferricyanide with a rate constant of 0.7 times 109 M -1 s-1.
A model for the various photochemical and photophysical processes involved in the decay and quenching of the lumiflavin triplet state is suggested and discussed.  相似文献   

8.
Abstract— A sensitive near-infrared detection system incorporating improvements to existing methodologies has been used to characterize the sodium azide quenching of the steady-state luminescence of singlet molecular oxygen at 1270 nm. Stern-Volmer plots which were linear up to 80% quenching of the 1O2 generated by rose bengal and eosin Y yielded a rate constant of 5.8 ± 0.1 times 108 M −1 s−1 for the quenching of 1O2 in water, while the rate constants obtained in deuterium oxide with the same sensitizers were 6.28 times 108 M −1 s−1 and 6.91 times 108 M −1 s−1 respectively. A flow system minimized the effects of photobleaching of the rose bengal. With a mercury arc light source, the instrument can be used in photosensitization experiments to detect low levels of 1O2 production in aqueous media.  相似文献   

9.
Abstract— The kinetics of photooxidation of triplets of metalloporphyrin compounds to their corresponding radical cations was investigated. Zn-tetraphenyl porphyrin (ZnTPP) and Mg-tetraphenylpor-phyrin (MgTPP) triplets were oxidized by europium salt with rate constants of 4.8 × 105M-1s-1 and 2.1 × 106M-1s-1, respectively. The high rate constant of oxidation of MgTPP triplet might be related to the ground state oxidation potential, being 0.54 V (SCE) for the Mg complex and 0.71 (SCE) for the Zn complex.
The rate constant of oxidation of ZnTPP excited singlet is in the order of diffusion control, i.e. ˜ 1010M -1 s-1. Excitation of ferric, cupric, cobaltic, and vanadyl tetraphenylporphyrin did not result in a long-lived triplet state that would allow oxidation studies using flash photolysis.  相似文献   

10.
Abstract—Reaction rate constants for the reaction of singlet oxygen with a series of 24 sulfides in chloroform have been measured by inhibition of the self-sensitized photooxidation of rubrene. The reaction rate constant is sensitive to steric effects, decreasing as the carbons α- to sulfur become more highly substituted. Addition of a methyl group to each of the carbons α- to sulfur decreases the rate constant by about a factor of 10. From a series of p - and m -substituted thioanisoles, a ρ of -1.67 ± 0.09 was found. A much better correlation was found with σ than with σ+ indicating there is no resonance interaction with the reaction center. Typical rate constants are: di- n -butyl sulfide, 2.3 × 107 M -1 s-1; CBZ-L-methionine methyl ester, 1.4 × 107; di-s-butyl sulfide, 1.8 × 106; di- t -butyl sulfide, 1.3 × 105; and thioanisole, 2.3 × 106.  相似文献   

11.
Abstract— The spectra and molar absorbances of the HO2 and O2- free radicals have been redetermined in aqueous formate solutions by pulse and stopped-flow radiolysis as well as by 60Co gamma-ray studies. The extinction coefficients at the corresponding maxima and 23°C are 225= 1400 ± 80 M -1 cm-1 and 225= 2350 ± 120 M -1 cm-1 respectively. Reevaluation of earlier published rate data in terms of the new extinction coefficients yielded the following rate constants for the spontaneous decay of HO2 and O2-: K Ho2+HO2= (8.60 ± 0.62) × 105 M -1 s-1; K Ho2+O2-= (1.02 ± 0.49) × 108 M -1 s-1; K Ho2+O2- < 0.35 M -1 s-1. For the equilibrium HO2→ O2-+ H+ the dissociation constant is K Ho2= (2.05 ± 0.39) × 10-5 M or p K HO2= 4.69 ± 0.08. G (O2-) has been evaluated as a function of formate concentration.  相似文献   

12.
Abstract— A novel method for the determination of singlet oxygen reaction rate constants is described and applied to studies of cyclohexadiene in methanol and gelatins in H2O and D2O. The technique uses tris (2,2'-bipyridine) ruthenium(II) dication (Ru(bipy)32+) as both singlet oxygen sensitizer and in situ oxygen concentration monitor during irradiation of sealed samples. Because of the high efficiency with which the luminescence of Ru(bipy)32+* can be detected, and the fact that emission lifetimes are used, the method offers some advantages over those previously described. The advantages and disadvantages of the method are discussed. A rate constant of 2.1 (±0.3) x 106 mol-1 dm3 s-1 has been determined for the reaction of 1O2 with cyclohexadiene in methanol. For two different photographic gelatins the sums of reaction and quenching rate constants are 2.0 (±0.4) x 106 and 3.1 (±2.0) x 105 mol-1 dm3 s-1; for swine skin gelatin this value is 3.9 (±2.4) × 105 mol-1 dm3 s-1. Chemical reaction, rather than physical quenching, is the dominant reaction route for gelatins and 1O2.  相似文献   

13.
Abstract— …According to the criteria of enhancement in D2O and inhibition by sodium azide, the oxidation of tyramine photosensitized by methylene blue is largely a singlet oxygen or Type II process. Its quantum yield approximates 0.3 in D2O at pH 10. There is a less efficient reaction not quenched by azide, which is assigned to a dye-substrate or Type I process. It gives rise to products with distinct bands at 320 and 285nm. Products of the Type I reaction are further oxidized by singlet oxygen and thereby compete with tyramine for this reagent. Kinetic parameters were estimated by computer simulation of the dependence of quantum yield on extent of reaction. The rate constant for reaction of O2 (1Δg) with tyramine was estimated to be 2.8 × 108 M -1 s -1± 20% at pH 10. The reaction was also sensitized by hypericin in what appears to be a Type II process.  相似文献   

14.
Abstract— Intense illumination (60-120 MW/cm2) of an oxygen-free aqueous solution of pyranine (8-hydroxypyrene-l,3,6-tri-sulfonate) by the third harmonic frequency of an Nd-Yag laser (355 nm) drives a two successive-photon oxidative process of the dye. The first photon excites the dye to its first electronic singlet state. The second photon interacts with the excited molecule, ejects an electron to the solution and deactivates the molecule to a ground state of the oxidized dye (φ+). The oxidized product, φ+, is an intensely colored compound (Λmax= 445 nm, ε= 43 000 ± 1000 M −1 cm−1) that reacts with a variety of electron donors like quinols, ascorbate and ferrous compounds. In the absence of added reductant, φ+ is stable, having a lifetime of -10 min. In acidic solutions the solvated electrons generated by the photochemical reaction react preferentially with H+. In alkaline solution the favored electron acceptor is the ground-state pyranine anion and a radical, φ, of the reduced dye is formed. The reduced product is well distinguished from the oxidized one, having its maximal absorption at 510 nm with e = 25 000 ± 2000 M-l cm−1. The oxidized radical can be reduced either by φ- or by other electron donors. The apparent second-order rate constants of these reactions, which vary from 106 up to 109M−1 s−1, are slower than the rates of diffusion-controlled reactions. Thus the redox reactions are limited by an energy barrier for electron transfer within the encounter complex between the reactants.  相似文献   

15.
Abstract— From time-resolved measurements of the decay of singlet molecular oxygen phosphorescence at 1270 nm in D2O, direct estimates have been gained for the rate constants of the singlet oxygen reactions with a group of sulphur compounds in the pD range 5 to 13. In the case of most of the thiols, the results are consistent with singlet oxygen reacting exclusively with the thiolate anions. At the normal physiological pH 7, the apparent rate constants (in units of M-1 s-1) were 8.9 times 106 (cysteine), 2.5 times 106 (N-acetyl cysteine), 2.9 times 106 (glutathione), 3.0 times 105 (2-mercaptoethanol), 2.3 times 107 (ergothioneine) and 2.7 times 106 (2-mercaptopropionyl glycine). For methionine the rate constant, 1.4 times 107, was independent of pD in the range studied. These sulphur compounds, in particular N-acetyl cysteine and ergothioneine, or related compounds, might be considered as possible candidates for protection against skin photosensitivity side effects associated with the photodynamic therapy of solid tumours and as observed in the disease erythropoietic protoporphyria.  相似文献   

16.
Abstract— The production of free radicals by reaction of 2,2,6,6-tetramethyl-4-piperidinol with singlet oxygen was studied by EPR spectroscopy. The rate constant of the amine was found to be equal to 8 ×105 M -1s-1 in ethanol and to 4 × 107M-1s-1 in phosphate buffer (pH 8). Competition experiments were performed with singlet oxygen quenchers such as NaN3, DABCO and the quenching rate constants were found to be consistent with the literature values. The EPR method proved to be a valuable technique to study the reaction of singlet O2 with the sterically hindered amine without any interfering effect.  相似文献   

17.
Abstract The excited state properties of the chalcone isomers of malvidin 3,5-diglucoside (malvin) in acidic aqueous solution (0 < pH < 4) were investigated using steady-state and time-resolved fluorescence spectroscopy. The two chalcone isomers of malvin were first isolated by high-performance liquid chromatography and then characterized by UV/visible absorption and fluorescence spectroscopy. The results were supported by molecular orbital calculations. The rate constants for photodeprotonation ( k 1= 1 × 109 s−l) and protonation ( k −1= 1.3 × 1010 L mol−1 s−l) were determined, both from the multiexponential fluorescence decays and the fluorescence intensities measured at the emission wavelengths of the neutral and ionized chalcone forms. The results here obtained are relevant for the understanding of the photoreactivity of anthocyanins in acidic medium.  相似文献   

18.
Abstract— The antimicrobial drug ethidium bromide (EB) has been found to form molecular complexes with nucleotides, the strongest being those with the purines AMP and GMP. For the EB-AMP and EB-GMP complexes (which we characterized) the values of the ground-state association constant have been found to be 100 and 103 M -1, respectively. The fluorescence of the drug is enhanced when complexed to AMP, GMP, and TMP by about 60, 30 and 10%, respectively, whereas it is quenched by about 20% when complexed to CMP. Fluorescence enhancement analysis has yielded the values of 1.1 × 1010 and 0.7 × 1010 M -1 s-1 for the excited-state rate constant of complex formation with the former two nucleotides, respectively. About one out of two collisions between an excited EB molecule and an AMP or GMP molecule results in complex formation. The potential implications of these findings for the EB-DNA interaction are discussed.  相似文献   

19.
The steady-state UVA (350 nm) photolysis of ( E )-β-ionone ( 1 ) in aerated toluene solutions was studied by 1H NMR spectroscopy. The formation of the 1,2,4-trioxane ( 2 ) and 5,8-endoperoxide ( 5 ) derivatives in the ratio of 4:1 was observed. Time-resolved laser induced experiments at 355 nm, such as laser-flash photolysis, photoacoustic and singlet oxygen 1O2 phosphorescence detection, confirmed the formation of the excited triplet state of 1 with a quantum yield Φ T = 0.50 as the precursor for the generation of singlet oxygen 1O2 ( Φ Δ = 0.16) and the isomeric α-pyran derivative ( 3 ), which was a reaction intermediate detected by NMR. In turn, the reaction of 1O2 with 1 and 3 occurred with rate constants of 1.0 × 106 and 2.5 × 108  m −1s−1 to yield the oxygenated products 5 and 2 , respectively, indicating the relevance of the fixed s-cis configuration in the α-pyran ring in the concerted [2+4] cycloaddition of 1O2.  相似文献   

20.
Abstract— Flash photolysis of neutral red between pH 1.3 and pH 11 yields the triplet species 3DH2+23DH+ and 3D. Both 3DH2+2 and 3D exhibit first order decay with rate constants of 1.6 ± 0.3 × 104 s-1 but 3DH+ decays within the lifetime of the flash. Over the entire pH range, ascorbic acid quenches the triplet, forming the semireduced radicals DH3+2 DH2+ and DH, all of which exhibit second order decay with k = 1.8 ± 0.4 ± 108 M -1s-1 most probably by recombination with semioxidized ascorbic acid. The dependence of the rate of decay of radical neutral red on the identity of reversible reductants supports the back-electron transfer mechanism, as does digital simulation of complex radical disproportionation schemes. In contrast to the efficient reduction of triplet neutral red by ascorbic acid, its reduction by EDTA is quite inefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号