首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Migratory insertions of olefins into metal–oxygen bonds are elementary steps of important catalytic processes, but well characterised complexes that undergo this reaction are rare, and little information on the effects of ancillary ligands on such reactions has been gained. We report a series of alkoxo alkene complexes of rhodium(i) that contain a range of bidentate ligands and that undergo insertion of the alkene. Our results show that complexes containing less electron-donating ancillary ligands react faster than their counterparts containing more electron-donating ancillary ligands, and that complexes possessing ligands with larger bite angles react faster than those with smaller bite angles. External added ligands had several effects on the reactions, including an inhibition of olefin isomerisation in the product and acceleration of the displacement of the product from complexes of ancillary ligands with small bite angles. Complementary computational studies help elucidate the details of these insertion processes.

A series of diphosphine-ligated rhodium(i) alkoxo alkene complexes is reported and the migratory insertion of the alkene moiety into the rhodium–oxygen bond in these complexes was studied, revealing the effects of the ligand on the insertion process.  相似文献   

2.
In contrast to the strong stability of saturated fluorine compounds in catalytic hydrogenation, allylic and vinylic fluorine atoms are displace by hydrogen relatively readily. Hydrogenolysis of carbon-fluorine bonds accompanies addition of hydrogen across double bonds in methyl 4-fluoro-3-methyl-2-pentenoate, in fluoromaleic, fluorofumaric, difluoromaleic and difluorofumaric acids. The extent of hydrogenolysis is affected by the catalyst and by the solvent. A concerted mechanism is offered to explain the readiness of the hydrogenolysis in allylic and vinylic fluorides.  相似文献   

3.
The reaction of oxygen reduction on the mercury electrode in the solution of the reversed micelles and in the presence of platinum and silver nanoparticles was studied. The data of inverse voltammetry show that in the presence of platinum nanoparticles the reaction can proceed via both two-electron and four-electron reaction mechanisms. In the case of silver nanoparticles it proceeds in accordance with the two-electron mechanism. Cumulative effect of catalytic action of platinum and silver nanoparticles on the molecular oxygen reduction was found.  相似文献   

4.
In the hydrogenation of unsaturated furan ketones in solvents at atmospheric pressure and room temperature the Raney Pd–Al catalyst is highly active and selective towards the hydrogenation of double bonds. The only reaction products are the respective saturated ketones.
, Pd–Al . . .
  相似文献   

5.
A bond-energy formula deduced by means of the Hellmann–Feynman theorem is applied to selected simple hydrocarbons. The required potentials at the nuclei are calculated with the help of large basis-set expansions including polarization functions. The carbon–carbon bond energy of ethane is evaluated at ~ 70 kcal mol?1. The CC bond energies of ethane, ethylene, acetylene, benzene, and cyclopropane are approximately in a ratio of 1: 2.0: 3.0: 1.65 1.0. Limitations and possible improvements in future applications of this energy formula are discussed. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
Li  Miaomiao  Li  Yuze  An  Qingda  Gong  Yumei  Liu  Yuanfa  Guo  Jing 《Research on Chemical Intermediates》2018,44(9):5669-5681
Research on Chemical Intermediates - Preparation and application of ecofriendly materials is becoming an urgent topic. In this work, a green approach for producing silver nanoparticles (AgNPs)...  相似文献   

7.
Co-free Li-rich layered oxide cathodes have drawn much attention owing to their low cost and high energy density. Nevertheless, anion oxidation of oxygen leads to oxygen peroxidation during the first charging process, which leads to co-migration of transition metal ions and oxygen vacancies, causing structural instability. In this work, we propose a pre-activation strategy driven by chemical impregnation to modulate the chemical state of surface lattice oxygen, thus regulating the structural and...  相似文献   

8.
Catalytic N–N coupling is a valuable transformation for chemical synthesis and energy conversion. Here, mechanistic studies are presented for two related copper-catalyzed oxidative aerobic N–N coupling reactions, one involving the synthesis of a pharmaceutically relevant triazole and the other relevant to the oxidative conversion of ammonia to hydrazine. Analysis of catalytic and stoichiometric N–N coupling reactions support an “oxidase”-type catalytic mechanism with two redox half-reactions: (1) aerobic oxidation of a CuI catalyst and (2) CuII-promoted N–N coupling. Both reactions feature turnover-limiting oxidation of CuI by O2, and this step is inhibited by the N–H substrate(s). The results highlight the unexpected facility of the N–N coupling step and establish a foundation for development of improved catalysts for these transformations.

Mechanistic studies provide valuable insights into Cu-catalyzed N–N coupling reactions relevant to energy conversion and pharmaceutical synthesis.  相似文献   

9.
The diene‐based polymer nanoparticles represented by poly(butadiene‐co‐acrylonitrile) were prepared in the semibatch emulsion polymerization system using Gemini surfactant (GS) trimethylene‐1,3‐bis(dodecyldimethylammonium bromide) as the emulsifier. The nanoparticles within the range of 17–54 nm were achieved with narrow molecular weight and particle size distributions. A spherical morphology was observed for the produced nanoparticles. The effects of GS concentration on the particle size, molecular weight, polymerization conversion and solid content, and composition of copolymer were investigated. The semibatch process using monomeric and conventional surfactant sodium dodecyl sulfate (SDS) was compared. At the second stage of this study, the prepared unsaturated nanoparticles were employed as the substrates for the latex hydrogenation in the presence of Wilkinson's catalyst, that is, RhCl(P(C6H5)3)3. The effects of the particle size and catalyst concentration on the latex hydrogenation rate were investigated. The particle size is found to have a significant effect on the reaction rate. When the 17‐nm nanoparticles were used as the substrates, a high conversion of 95 mol % was obtained within 18 h using only 0.1 wt % RhCl(P(C6H5)3)3. The latex hydrogenation process was completely free of organic solvents. The present synthesis and following “green” hydrogenation process can be extended to latices made from semibatch emulsion containing other diene‐based polymers. This study shows great promise for decreasing the demanded quantity of expensive catalyst and eliminating the organic solvent in the hydrogenation process. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
The precise location of C Created by potrace 1.16, written by Peter Selinger 2001-2019 C bonds in bioactive molecules is critical for a deep understanding of the relationship between their structures and biological roles. However, the traditional ultraviolet light-based approaches exhibited great limitations. Here, we discovered a new type of visible-light activated [2 + 2] cycloaddition of carbonyl with C Created by potrace 1.16, written by Peter Selinger 2001-2019 C bonds. We found that carbonyl in anthraquinone showed great reactivities towards C Created by potrace 1.16, written by Peter Selinger 2001-2019 C bonds in lipids to form oxetanes under the irradiation of visible-light. Combined with tandem mass spectrometry, this site-specific dissociation of oxetane enabled precisely locating the C Created by potrace 1.16, written by Peter Selinger 2001-2019 C bonds in various kinds of monounsaturated and polyunsaturated lipids. The proof-of-concept applicability of this new type of [2 + 2] photocycloaddition was validated in the global identification of unsaturated lipids in a complex human serum sample. 86 monounsaturated and polyunsaturated lipids were identified with definitive positions of C Created by potrace 1.16, written by Peter Selinger 2001-2019 C bonds, including phospholipids and fatty acids even with up to 6 C Created by potrace 1.16, written by Peter Selinger 2001-2019 C bonds. This study provides new insights into both the photocycloaddition reactions and the structural lipidomics.

A new visible-light activated [2 + 2] cycloaddition reaction was discovered and enabled pinpointing carbon–carbon double bonds in lipids.  相似文献   

11.
提出了一种催化降解氯代苯胺高选择性合成环己酮的技术.在La修饰Pd/Al2O3催化剂作用下,通过催化加氢的方法实现了由多氯代苯胺(2,4,6-三氯苯胺和2,4,-二氯苯胺)高选择性地合成环己酮(不含环己醇).在优化的反应条件下,2,4,6-三氯苯胺加氢生成环己酮的转化率和选择性分别为100%和98.6%(没有检测到环己醇);2,4,-二氯苯胺加氢生成环己酮的转化率和选择性均为100%.氯代苯胺在Pd/La-Al2O3催化剂表面首先发生加氢脱氯/N-甲基化等反应生成苯胺、N-甲基苯胺和N,N-二甲基苯胺等中间产物,随后这些中间产物发生苯环加氢、氨基水解/醇解等反应得到环己酮;氯代苯胺上Cl元素的存在和体系中水的含量是影响环己酮选择性的重要因素.  相似文献   

12.
13.
This paper reports properties of carbon nanoparticles used as anode of lithium-ion battery. It shows that carbon nanoparticles have a high first-charge capacity and good potential for cycling and, if properly modified, are a promising anode material for lithium-ion batteries. Published in Russian in Elektrokhimiya, 2006, Vol. 42, No. 8, pp. 999–1001. The text was submitted by the authors in English.  相似文献   

14.
Nickel nanoparticles supported on silica were prepared by hydrazine reduction in aqueous medium. The obtained solids were characterized by X-ray diffraction (XRD), Transmission Electronic Microscopy (TEM), Electron Diffraction (ED), hydrogen chemisorption, and Temperature Programmed Desorption of hydrogen (H2-TPD). The catalytic properties were evaluated for benzene hydrogenation in the temperature range 75–230 °C. XRD patterns reveal presence of the metallic nickel particles with fcc structure. Metal dispersion and hydrogen storage increase with decreasing metal particle size. The H2-TPD profiles exhibit two domains, one due to desorption of hydrogen from Ni metal and another due to spillover from metal to the support. The catalytic activity strongly depends on the metal loading. It increases with decreasing metal loading. This is attributed to metal surface area, which also increases with decreasing metal loading. Kinetic studies of benzene hydrogenation on the Ni catalysts showed that the benzene partial order is around −2. This significant negative value is ascribed to a strong adsorption of benzene on the catalyst surface.  相似文献   

15.
Five compounds containing boron–boron multiple bonds are shown to undergo hydrophosphination reactions with diphenylphosphine in the absence of a catalyst. With diborenes, the products obtained are highly dependent on the substitution pattern at the boron atoms, with both 1,1- and 1,2-hydrophosphinations observed. With a symmetrical diboryne, 1,2-hydrophosphination yields a hydro(phosphino)diborene. The different mechanistic pathways for the hydrophosphination of diborenes are rationalised with the aid of density functional theory calculations.

Compounds containing boron–boron double and triple bonds are shown to undergo uncatalysed hydrophosphination reactions with diphenylphosphine.  相似文献   

16.
We report the synthesis of in situ generated cobalt nanoparticles from molecularly defined complexes as efficient and selective catalysts for reductive amination reactions. In the presence of ammonia and hydrogen, cobalt–salen complexes such as cobalt(ii)–N,N′-bis(salicylidene)-1,2-phenylenediamine produce ultra-small (2–4 nm) cobalt-nanoparticles embedded in a carbon–nitrogen framework. The resulting materials constitute stable, reusable and magnetically separable catalysts, which enable the synthesis of linear and branched benzylic, heterocyclic and aliphatic primary amines from carbonyl compounds and ammonia. The isolated nanoparticles also represent excellent catalysts for the synthesis of primary, secondary as well as tertiary amines including biologically relevant N-methyl amines.

We report the synthesis of in situ generated cobalt nanoparticles from molecularly defined complexes as efficient and selective catalysts for reductive amination reactions.  相似文献   

17.
A new and straightforward method for screening highly catalytically active silver nanoparticle-polymer composites derived from branched polyethyleneimine (PEI) is reported. The one-step systematic derivatization of the PEI scaffold with alkyl (butyl or octyl) and ethanolic groups led to a structural diversity correlated to the stabilization of silver nanoparticles and catalysis. Analysis of PEI derivative libraries identified a silver nanoparticle-polymer composite that was able to efficiently catalyze the p-nitrophenol reduction by NaBH(4) in water with a rate constant normalized to the surface area of the nanoparticles per unit volume (k(1)) of 0.57 s(-1) m(-2) L. Carried out in the presence of excess NaBH(4), the catalytic reaction was observed to follow pseudo-first-order kinetics and the apparent rate constant was linearly dependent on the total surface area of the silver nanoparticles (Ag-NPs), indicating that catalysis takes place on the surface of the nanoparticles. All reaction kinetics presented induction periods, which were dependent on the concentration of substrates, the total surface of the nanoparticles, and the polymer composition. All data indicated that this induction time is related to the resistance to substrate diffusion through the polymer support. Hydrophobic effects are also assumed to play an important role in the catalysis, through an increase in the local substrate concentration.  相似文献   

18.
19.
Gold nanoparticles (2–10 nm) supported on γ-Al2O3 exhibit high activity and stability in the hydrogenation of phenylacetylene into styrene in the phenylacetylene-styrene mixture. The selectivity of the catalyst is particle size-dependent: the styrene-to-ethylbenzene molar ratio in the reaction products increases from 2 to 30 as the average gold particle size decreases from 8 to 2.5 nm. The selectivity of phenylacetylene hydrogenation correlates with the selectivity of phenylacetylene adsorption on Au/γ-Al2O3 from the phenylacetylene-styrene mixture.  相似文献   

20.
Developing highly efficient catalytic protocols for C–sp(3)–H bond aerobic oxidation under mild conditions is a long-desired goal of chemists. Inspired by nature, a biomimetic approach for the aerobic oxidation of C–sp(3)–H by galactose oxidase model compound CuIIL and NHPI (N-hydroxyphthalimide) was developed. The CuIIL–NHPI system exhibited excellent performance in the oxidation of C–sp(3)–H bonds to ketones, especially for light alkanes. The biomimetic catalytic protocol had a broad substrate scope. Mechanistic studies revealed that the CuI-radical intermediate species generated from the intramolecular redox process of CuIILH2 was critical for O2 activation. Kinetic experiments showed that the activation of NHPI was the rate-determining step. Furthermore, activation of NHPI in the CuIIL–NHPI system was demonstrated by time-resolved EPR results. The persistent PINO (phthalimide-N-oxyl) radical mechanism for the aerobic oxidation of C–sp(3)–H bond was demonstrated.

A biomimetic catalytic approach for the aerobic oxidation of C–sp(3)–H bonds using galactose oxidase model compound was developed. EPR showed that the CuI-radical intermediate species was critical for O2 activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号