首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A highly practical method for comprehensive chiroptical sensing of free α amino acids with streamlined operation and high sensitivity via dual CD/UV measurements is developed. The assay takes advantage of an efficient and selective three-component labeling reaction of primary amines with o-phthalaldehyde and p-toluenethiol reagents to derivatize the NH2 group of analytes into an isoindole. The covalent labeling generates sensitive UV and CD readouts, both of which show an excellent linear relationship with the concentration of analytes. The high reactivity and the novel optical reporting mechanism allow fast and accurate measurement without background interference. The sensing assay works well for a remarkably broad range of analyte concentrations, with an unprecedented lower limit of 10 micromolar concentration.

A highly practical method for comprehensive chiroptical sensing of free α amino acids with streamlined operation and high sensitivity via dual CD/UV measurements is developed.  相似文献   

2.
Marwan W. Ghosn 《Tetrahedron》2010,66(23):3989-6803
The condensation between stereolabile 1,8-bis(3′-formyl-4′-hydroxyphenyl)naphthalene, 1, and two amino acid molecules results in the formation of chiral diimines exhibiting strong CD signals. This reaction has been used to develop a chiroptical sensing method for the determination of the absolute configuration and enantiomeric composition of unprotected amino acids. This sensing approach is based on distinctive chiral amplification due to central-to-axial chirality induction within the diimine scaffold formed and does not require the use of an enantiopure ligand or metal complex.  相似文献   

3.
Broadly useful chiroptical enantiomeric excess (ee) sensing remains challenging and typically involves carefully designed molecular receptors or supramolecular assemblies. Herein, we report on the enantioselective sensing of 35 amino acids, amino phosphonic acids, hydroxy acids, amino alcohols, and diamines with an auxiliary‐free cobalt probe. Chiroptical analysis of the enantiomeric composition and concentration of minute sample amounts was achieved with high accuracy by using earth‐abundant cobalt salts and hydrogen peroxide as the oxidant. Despite the absence of an auxiliary ligand, the cobalt assay is applicable to aromatic and aliphatic compounds and yields strong CD signals at high wavelengths. This method obviates the general prerequisite for chromophoric metal ligands to generate chiroptical signals through ECCD (exciton‐coupled circular dichroism) effects or through analyte‐to‐ligand chirality induction, and it offers operational simplicity, cost efficiency, waste reduction, and speed.  相似文献   

4.
A new racemic naphthyl-coumarin-based probe was found to bind covalently with amino acids in MeOH-KOH system and thereby generates distinct CD responses. The induced strong CD signals allowed quantitative enantiomeric excess analysis of amino acids and enantioselective sensing of amines and amino alcohols. The mechanism for the reaction of the coumarin-aldehyde probe with an amino acid was investigated by CD, UV-Vis, NMR, ESI-MS analyses and ECD calculation.  相似文献   

5.
A sterically encumbered aminoborane sensor is introduced and used for quantitative stereochemical analysis of monoalcohols, diols and amino alcohols. The small-molecule probe exhibits a rigid ortho-substituted arene scaffold with a proximate boron binding site and a triarylamine circular dichroism (CD) reporter unit which proved to be crucial for the observed chiroptical signal induction. Coordination of the chiral target molecule produces strong Cotton effects and UV changes that are readily correlated to its absolute configuration, enantiomeric composition and concentration to achieve comprehensive stereochemical analysis within a 5 % absolute error margin. The sensing method was successfully applied in the chromatography-free analysis of less than one milligram of a crude asymmetric reaction mixture and the advantages of this chiroptical sensing approach, which is amenable to high-throughput experimentation equipment and automation, over traditional methods is discussed.  相似文献   

6.
The development of molecular probes for optical sensing of chiral compounds has received increasing attention in recent years, in particular because of the potential to accelerate asymmetric reaction analysis. In this study, we prepared conformationally flexible oligo(phenylene)ethynylene foldamers carrying peripheral bis(trifluoromethyl)phenylurea units that undergo hydrogen bonding with chiral carboxylic acids. This interaction results in a chiral amplification process across the stereodynamic sensor scaffold which coincides with characteristic circular dichroism signals at high wavelengths. The induced chiroptical signals allow quantitative determination of the enantiomeric excess of the substrate which was demonstrated with nonracemic samples of tartaric acid. The chirality sensing assay is fast, sufficiently accurate for high-throughput screening purposes and adaptable to parallel analysis with multiwell plate readers.  相似文献   

7.
A practical UV-vis sensing method for enantioselective microanalysis of unprotected amino acids, amines, amino alcohols, and carboxylic acids in aqueous solution has been developed. Both concentration and enantiomeric composition of a wide range of chiral substrates can be determined with high accuracy by two simple competitive binding assays using a scandium complex derived from 1,8-bis(3-(3',5'-dimethylphenyl)-9-acridyl)naphthalene N,N'-dioxide.  相似文献   

8.
A dramatic enhancement in fluorescence intensity from 1,1'-bi-2-naphthol (BINOL) to dendritic phenyleneethynylenes containing the BINOL core was observed. The strong fluorescence of the dendrimers allows a very small amount of the chiral materials to be used for sensing. The light harvesting antennas of the dendrimer funnel energy to the center BINOL unit, whose hydroxyl groups upon interaction with a quencher molecule lead to fluorescence quenching. This mechanism makes the dendrimers have much more sensitive fluorescence responses than corresponding small molecule sensors. The fluorescence of these dendrimers can be enantioselectively quenched by chiral amino alcohols. It is observed that the fluorescence lifetime of the generation two dendrimer does not change in the presence of various concentrations of 2-amino-3-phenyl-1-propanol. This demonstrates that the fluorescence quenching is entirely due to static quenching. Thus, formation of nonfluorescent ground-state hydrogen-bond complexes between the dendrimers and amino alcohols is proposed to account for the fluorescent quenching. A linear relationship has been established between the Stern-V?lmer constant of the generation two dendrimer and the enantiomeric composition of 2-amino-3-phenyl-1-propanol. Such enantioselective fluorescent sensors may allow a rapid determination of the enantiomeric composition of chiral molecules and are potentially useful in the combinatorial search of asymmetric catalysts and reagents.  相似文献   

9.
Porphyrin diad 1 was synthesized by reaction of the acyl chloride of porphyrin 2 and trans-1,2-dithiane-4,5-diol. The Co complex of this diad was studied as a potential enantioselective receptor for chiral recognition in solution and in the solid state. In solution both enantiomers of limonene induce significant changes in the visible and circular dichroism (CD) spectra of [Co2(1)], while a different behavior is observed in the case of the enantiomeric pair of trans-1,2-diaminocyclohexane. A different efficiency of [Co2(1)] chiral recognition is obtained for these compounds, with a remarkable degree of enantiodiscrimination observed in the case of limonene. Self-assembled monolayers of [Co2(1)] were deposited onto the gold electrodes of quartz crystal microbalances to be used as sensing materials of nanogravimetric sensors operating in the gas phase. The enantiodiscrimination properties of these sensors towards the enantiomeric pairs of chiral analytes have been studied. While in the case of analytes bearing donor ligand atoms we did not observe a remarkable enantioselectivity, a significant degree of chiral discrimination was observed in the case of limonene; this result is particularly encouraging for the potential development of enantioselective chemical sensors for use in an array configuration.  相似文献   

10.
Planar chiral carbon nanorings and nanobelts (CNRs and CNBs), the sidewall segment molecules of chiral-type carbon nanotubes (CNTs), have attracted attention owing to their characteristic chiroptical properties. From the appropriate CNTs, axially or planar chiral CNRs and CNBs have been designed and synthesized, but multiply helical sidewall segments were almost unexplored due to the difficulty in simultaneous control of multiple chiralities. In this article, we have succeeded in the perfectly diastereo- and enantiocontrolled catalytic synthesis of a cycloparaphenylene with four helical and two planar chiralities showing good chiroptical responses as chiral organic molecules. The perfectly stereocontrolled multiply helical structure was confirmed by a single-crystal X-ray diffraction analysis. The experimental and theoretical studies established the importance of the highly symmetric multiply helical structure in the cylindrical axis in obtaining good chiroptical responses.

The perfectly diastereo- and enantiocontrolled catalytic synthesis of a cycloparaphenylene with four helical and two planar chiralities showing good chiroptical responses was achieved by the rhodium-catalyzed alkyne cyclotrimerization.  相似文献   

11.
A method for discriminating between α-chiral primary amine enantiomers is reported. The method utilizes circular dichroism (CD) spectroscopy and a sensing ensemble composed of 2-formyl-3-hydroxypyridine (4) and Fe(II)(TfO)(2). Aldehyde 4 reacts rapidly with chiral amines to form chiral imines, which complex Fe(II) to form a series of diastereomeric octahedral complexes that are CD-active in both the UV and visible regions of the spectrum. NMR studies showed that for enantiomerically pure imine complexes, the Δ-fac isomer is preferred. A statistical analysis of the distribution of stereoisomers accurately modeled the calibration curves for enantiomeric excess (ee). CD signals appearing in the UV region were bisignate, and the nulls of the CD signals were coincident with maxima in the UV spectrum, consistent with exciton coupling. Time-dependent density functional theory and semiempirical calculations confirmed that the CD signals in the UV region arise from coupling of the π-π* transitions in the imine chromophores and that they can be used to describe the signs and magnitudes of the curves accurately. The CD signals in the visible region arise from metal-to-ligand charge-transfer bands, and these signals can be used to determine the ee values of chiral amines with an average absolute error of ±5%. Overall, the strategy presented herein represents a facile in situ assembly process that uses commercially available simple reagents to create large optical signals indicative of ee values.  相似文献   

12.
We report the first combined use of analytical spectroscopy, guest–host chemistry, and multivariate regression analysis for determination of enantiometric composition of multicomponent samples of chiral analytes. Sample solutions containing multicomponent analytes of ephedrine, tryptophan, propranolol, and proline of varying enantiomeric composition with beta-cyclodextrin (BCD) or methyl-beta-cyclodextrin (Me-BCD) as chiral host molecules were investigated using ultraviolet (UV)–visible spectroscopy. The interactions of enantiomers of chiral analytes with chiral hosts resulted in the formation of transient diastereomeric inclusion complexes with varying spectral properties. Multivariate analysis using partial-least-square (PLS) regression was used to correlate subtle changes in the UV–visible spectra of the guest–host complexes with the enantiomeric composition of the calibration samples. These PLS regressions were carefully optimized and then used to predict the enantiomeric composition of multicomponent chiral analytes of validation samples. The results of these validation studies demonstrate the predictive ability of the regression models for determination of future enantiomeric composition of samples. The accuracy of the models to correctly predict the enantiomeric composition of samples, evaluated by use of the root mean square percent relative error (RMS%RE) was analyte and chiral host dependent. In general, better prediction of enantiomeric composition of samples and low RMS%RE values were obtained when Me-BCD was used as the chiral host. The analyses procedure reported here is simple, rapid, and inexpensive. In addition, this approach does not require prior separation of chiral analytes, thus reducing analysis time and eliminating the need for expensive chiral columns.  相似文献   

13.
The acquisition of strong chiroptical activity has revolutionized the field of plasmonics, granting access to novel light–matter interactions and revitalizing research on both the synthesis and application of nanostructures. Among the different mechanisms for the origin of chiroptical properties in colloidal plasmonic systems, the self-assembly of achiral nanoparticles into optically active materials offers a versatile route to control the structure–optical activity relationships of nanostructures, while simplifying the engineering of their chiral geometries. Such unconventional materials include helical structures with a precisely defined morphology, as well as large scale, deformable substrates that can leverage the potential of periodic patterns. Some promising templates with helical structural motifs like liquid crystal phases or confined block co-polymers still need efficient strategies to direct preferential handedness, whereas other templates such as silica nanohelices can be grown in an enantiomeric form. Both types of chiral structures are reviewed herein as platforms for chiral sensing: patterned substrates can readily incorporate analytes, while helical assemblies can form around structures of interest, like amyloid protein aggregates. Looking ahead, current knowledge and precedents point toward the incorporation of semiconductor emitters into plasmonic systems with chiral effects, which can lead to plasmonic–excitonic effects and the generation of circularly polarized photoluminescence.

Diverse templating materials and assembly strategies can be used to induce collective optical activity on achiral plasmonic building blocks. We present the advances, applications, challenges, and prospects of plasmonic–excitonic hybrids.  相似文献   

14.
Mohammed Zougagh 《Talanta》2009,79(2):284-1947
A simple and enantioselective method for the determination of menthone enantiomers in peppermint essential oil samples is proposed. The method involves the initial supercritical fluid extraction (SFE) to clean-up and extraction of analytes and their preconcentration on C18 adsorption cartridges followed by achiral liquid chromatographic separation and direct circular dichroism (CD) detection. The calibration curve of the anisotropy factor (g) versus the enantiomeric excess was linear, with a correlation coefficient (R2) of 0.9970. The precision evaluated by UV peak area and CD peak area was suitable both in terms of intra- and inter-day precision (RSD < 5.1% in all cases). The usefulness of the proposed method was demonstrated by analyzing natural and spiked peppermint oil samples. This method has the advantages of being rapid and precise without using an expensive chiral column. It was demonstrated to be suitable for the simultaneous determination of both enantiomers and for assessing the chemical purity of menthone.  相似文献   

15.
16.
Three complementary capillary electrophoresis (CE) methods were developed for the separation and quantification of ephedrine and pseudoephedrine stereoisomers. Either single or dual cyclodextrin-based chiral selector systems provided enantioselective separation of the compounds of interest. The three methods were applied to the analysis of a suite of five standard reference materials (SRMs) containing ephedra. Use of a high-sensitivity UV detection cell enhanced quantification of the analytes of interest over the wide range of concentrations encountered in the SRMs. Results for (-)-ephedrine ranged from 0.31 to 76.43 mg/g, and for (+)-pseudoephedrine ranged from 0.049 to 9.23 mg/g in the materials studied. Results from the three methods agreed well with each other and with the results from other methods of analysis. The addition of known amounts of specific enantiomers was used to confirm the enantiomeric identity of the analytes. The results obtained by the three CE methods were utilized for value assignment of the ephedrine alkaloid content of these five SRMs.  相似文献   

17.
Ternary complexes between the macrocyclic host cucurbit[8]uril, dicationic dyes, and chiral aromatic analytes afford strong induced circular dichroism (ICD) signals in the near‐UV and visible regions. This allows for chirality sensing and peptide‐sequence recognition in water at low micromolar analyte concentrations. The reversible and noncovalent mode of binding ensures an immediate response to concentration changes, which allows the real‐time monitoring of chemical reactions. The introduced supramolecular method is likely to find applications in bioanalytical chemistry, especially enzyme assays, for drug‐related analytical applications, and for continuous monitoring of enantioselective reactions, particularly asymmetric catalysis.  相似文献   

18.
Chiral nonbonding interaction with N-protected amino acid methyl esters used as chiral additives in achiral solvents allows dynamic induction of single-handed helical conformation in poly(quinoxaline-2,3-diyl)s (PQX) bearing only achiral substituents. Ac-l-Pro-OMe, for instance, allows induction of energy preference of 0.16 kJ mol−1 per monomer unit for the M-helical structure over the P-helix in t-butyl methyl ether (MTBE). With this new mode of screw-sense induction, homochiral screw-sense has been induced in virtually achiral poly(quinoxaline-2,3-diyl)s 1000-mer containing phosphine pendants (PQXphos). Use of PQXphos as a helically dynamic ligand along with Ac-Pro-OMe (l or d) as a chiral additive in MTBE allowed a highly enantioselective Suzuki–Miyaura coupling reaction with up to 95% enantiomeric excess.

Achiral poly(quinoxaline-2,3-diyl) containing Ar2P groups undergo dynamic induction of M-helical conformation through nonbonding interaction with protected AA such as Ac-l-Pro-OMe, serving as a chiral ligand in asymmetric cross-coupling with up to 95% ee.  相似文献   

19.
Two methods are compared for analyzing the enantiomeric purity of aliphatic amines and amino alcohols using NMR spectroscopy. The first employs (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid as a chiral NMR solvating agent in methanol‐d4. The second involves a derivatization scheme in which the amine is reacted with naphtho[2,3‐c]furan‐1,3‐dione to form the corresponding amide. The naphthyl amide is then mixed with a chiral calix[4]resorcinarene in deuterium oxide. The crown ether only produces sufficient enantiomeric discrimination to determine enantiomeric purity for three of the nine substrates studied. The system with the naphthyl amide and a calix[4]resorcinarene produces enantiomeric discrimination of sufficient magnitude to determine enantiomeric purity for all nine substrates. The H1 and H4 resonances of the naphthyl ring are especially suitable to monitor for enantiomeric discrimination. The order of the (R)‐ and (S)‐enantiomers of the H1 and H4 resonances exhibit specific trends for aliphatic amines and amino alcohols that correlate with the absolute configuration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Ruthenium(II) chiral Schiff base complexes 1–10 and their precursor ligands derived from -amino acids viz. -leucine, -histidine with salicylaldehyde, 3-tertiary-butyl-, 3,5-di-tertiary-butyl-, 3,5 dichloro- and 3,5-dinitrosalicylaldehyde are reported. The characterization of the ligands and complexes was accomplished by various appropriate physico-chemical studies, namely, microanalysis, IR-, UV/Vis-, 1H, 31P{1H} NMR, CD spectroscopy, optical rotation, conductance measurement and cyclic voltammetry. The complexes thus synthesised were used as catalysts for enantioselective epoxidation of 1,2-dihydronaphthalene. The effect on enantioselectivity and chemical conversions to epoxide were studied in different solvents viz. acetonitrile, dichloromethane and fluorobenzene along with change of the substituents on ligands and different terminal oxidants. The less polar nature of solvent as well as the donating group attached on the catalysts favours enantioselectivity, while PhIO was the oxidant of choice. The enantiomeric excess of the resulting epoxide was evaluated by chiral cyclodex BDA capillary column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号