首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
A kinetic study of the thermal decomposition of tomato plant has been carried out under different conditions by TG and TG–MS. A total of 24 experiments were performed in a nitrogen atmosphere (pyrolysis runs) and also in an oxidative atmosphere with two different oxygen concentrations (10% and 20% oxygen in nitrogen). Dynamic runs and dynamic + isothermal runs have been carried out to obtain many data of decomposition under different operating conditions.A scheme of five independent reactions for pseudocomponents has been proposed for the pyrolysis process, although only three fractions have probed to be significant, comparing the weight fractions of volatiles evolved with the hemicellulose, cellulose and lignin content of the plant. For the combustion runs, four new reactions have been added: two competitive oxidation reactions for the cellulose and lignin, and two combustion reactions of the carbonaceous residue obtained from pyrolysis. The kinetic parametres have been calculated by integration of the differential equations and minimizing the differences between the experimental and calculated values. It is important to emphasize that the same set of parameters has been proposed for the pyrolysis and combustion runs, and which do not depend on either the heating rate in dynamic runs or whether the run is carried out in a dynamic or isothermal mode. The influence of the oxygen pressure has been also discussed.  相似文献   

2.
Thermogravimetric (TG) data of oil sand obtained at Engineering Research Center of Oil Shale Comprehensive Utilization were studied to evaluate the kinetic parameters for Indonesian oil sand samples. Experiments were carried out at heating rates of 5, 15, and 25 °C min?1 in nitrogen, 10, 20, and 50 °C min?1 in oxygen atmosphere, respectively. The extent of char combustion was found out by relating TG data for pyrolysis and combustion with the ultimate analysis. Due to distinct behavior of oil shale during pyrolysis, TG curves were divided into three separate events: moisture release, devolatilization, and evolution of fixed carbon/char, where for each event, kinetic parameters, based on Arrhenius theory, were calculated. Coats–Redfern method, Flynn–Wall–Ozawa method, and distributed activation energy model method have been used to determine the activation energies of degradation. The methods are compared with regard to their characteristics and the ease of interpretation of the thermal kinetics. Activation energies of the samples were determined by three different methods and the results are discussed.  相似文献   

3.
垃圾衍生燃料等温快速热解和燃烧反应特性   总被引:4,自引:4,他引:4  
利用热天平和管式炉对RDF(Refuse Derived Fuel)等温快速热解和燃烧反应特性进行了研究。实验发现,在等温快速升温的条件下,RDF热解和燃烧的反应速率都非常快,从受热开始到反应结束需60 s~80 s;从开始失重到完成反应为20 s。RDF热解和燃烧热重反应曲线非常类似,都只有一个反应失重区;RDF组成对其燃烧和热解反应性有重要影响,含有橡胶的RDF的热解和燃烧反应速率较小。在650 ℃~800 ℃RDF快速热解产物中气、液产物的产率可达80%~90%,而固体产物的产率只有10%~20%,热解气体的热值为20kJ/m3,RDF较适合进行热解处理。  相似文献   

4.
废轮胎热解特性研究   总被引:6,自引:2,他引:6  
利用TG/DTG对不同来源的三种废轮胎样品的热解特性进行了研究,并得到了热解动力学参数。结果表明,新旧废外轮胎样品热解趋势基本一致,均经历了一个不明显的失重过程和两个明显的失重过程,其原因是由于废外轮胎中的橡胶组分比较复杂;内轮胎样品中的组分比较单一,其热解过程比较简单,仅经历了一个不明显的失重过程和一个明显的失重过程;三种样品的主要失重温度为600K~800K,转化率为0.2~0.8;使用一级动力学反应模型很好的拟和了三种样品的主要失重过程,并求出了热解动力学参数。  相似文献   

5.
Resorcinol–formaldehyde aerogels (five samples, three of them with addition of nitrogen containing precursors—3-hydroxypyridine, 3-aminophenol and melamine) have been prepared by sol–gel polycondensation, subcritical drying and pyrolysis. The pyrolysis of prepared organic aerogels has been studied by non-isothermal TG at constant heating rate. The process of pyrolysis has been found to consist of three steps with the total mass loss 40.2–61.7% (room temperature—1,000 °C). The resulted carbon aerogels have been tested as sorbents of Ni(II), Pb(II) and Cu(II) ions from aqueous solutions. Various relations have been found among the results obtained from the pyrolysis experiments and properties affecting adsorption. Besides the expected correlation between the mass loss gained from TG (isothermal step at 500 °C was applied) and from heating in the laboratory oven, the relationship between the mass loss during pyrolysis and sorption capacities for all three metal ions has been found. Other relations among pyrolysis behaviour, surface area and content of nitrogen have been also examined. Batch adsorption experiments show (with an exception of one sample) that N-doped samples have higher adsorption capacity for metal ions. In addition, changing of nitrogen functionalities during the pyrolysis has been considered and pyridinic-N (N-6) functionality has been contemplated as a suitable structure for the adsorption process.  相似文献   

6.
One of the most important parameters that can significantly affect the cost of the tire pyrolysis process is the time needed for thermal decomposition of the tire material. In this work, the influence of particle size and kinetics of thermal decomposition on the pyrolysis time was studied. The apparent kinetic parameters of tire thermal decomposition were estimated using three different approaches based on thermogravimetry measurements. In separate experiments, tire particles with different sizes were pyrolyzed under isothermal conditions in a laboratory flow reactor at different residence times of the particles in the reactor and the data recorded were employed in the determination of tire conversion during the thermal decomposition. A mathematical model of tire pyrolysis considering heat conduction in the tire particles was developed. All three types of estimated kinetic parameters were used to determine the conversion behavior at isothermal conditions and the results were compared with experimental data obtained. The model was used also to calculate the pyrolysis time in an industrial scale reactor at different temperatures and particle sizes.  相似文献   

7.
Brominated flame retardants are well recognized as being highly effective flame retardants. 4-4′-Isopropylidenebis(2,6-dibromophenol), commonly known as tetrabromobisphenol A, is the brominated flame retardant with the largest production volume and is used to improve fire safety, mainly of laminates in electrical and electronic equipment. A kinetic study of the pyrolysis of TBBA has been carried out to obtain decomposition parameters under different operating conditions and taking into account that TBBA is a compound with a high boiling point and that vaporization occurs simultaneously to decomposition. Dynamic runs and dynamic + isothermal run at different heating rates and using different masses of sample were correlated simultaneously. All TG runs were fitted with a unique set of kinetic parameters that is able to explain all the experiments. Moreover, a simplified detailed kinetic model has been developed and the kinetic parameters obtained satisfactorily reproduce the thermal decomposition of TBBA.  相似文献   

8.
Oil shale semicoke, formed in retort furnaces, is a source of severe environmental pollution and is classified as a dangerous solid waste. For the industrial application of oil shale semicoke in combustion, this present work focused on the thermal analysis of its combustion characteristics. The pyrolysis and combustion experiments of semicoke were conducted in a Pyris thermogravimetric analyzer. From the comparison of pyrolysis curves with combustion curves, the ignition mechanism of semicoke samples prepared at different carbonization temperatures was deduced, and was found to be homogeneous for semicoke samples obtained at lower carbonization temperature, shifting to heterogeneous with an increase in the carbonization temperature. The effect of carbonization temperatures and heating rates on the combustion process was studied as well. At last, combustion kinetic parameters of semicoke were calculated with the binary linear regression method, showing that activation energy will increase with increasing the heating rate.  相似文献   

9.
生物质是一种可再生、污染小的自然资源,它可以直接燃烧产生热能,也可以转化为气体、液体燃料或化工原料。生物质热转化技术近年来受到国内外学者的广泛重视。而热转化过程中,热解是第一步,与生物质组分、热解温度、滞留时间等因素有关。热重仪(TGA)是一种研究热解机理常用的方法,它适用于慢速程序升温的热解研究。研究发现,热解条件及生物质种类对反应表观活化能与表观频率因子等动力学参数有很大影响。层流炉闪速加热设备,已经用于煤的热解研究。本文利用自己设计的以热等离子体为热源的层流炉系统,对椰子壳、棉花秆和稻壳粉末进行了闪速热解实验研究及模型理论分析,探讨了生物质化学组分、热解温度和滞留时间对挥发分的影响,为生物质闪速热解提供了一定的基础数据。  相似文献   

10.
Pyrolysis of textile wastes: I. Kinetics and yields   总被引:1,自引:0,他引:1  
Thermal behavior of textile waste was studied by thermogravimetry at different heating rates and also by semi-batch pyrolysis. It was shown that the onset temperature of mass loss is within 104–156 °C and the final reaction temperature is within 423–500 °C. The average mass loss is 89.5%. There are three DTG peaks located at the temperature ranges of 135–309, 276–394 and 374–500 °C, respectively. The first two might be associated with either with decomposition of the hemicellulose and cellulose or with different processes of cellulose decomposition. The third peak is possibly associated to a synthetic polymer. At a temperature of 460 °C, the expected amount of volatiles of this waste is within 85–89%. The kinetic parameters of the individual degradation processes were determined by using a parallel model. Their dependence on the heating rate was also established. The pyrolysis rate is considered as the sum of the three reaction rates. The pyrolysis in a batch reactor at 700 °C and nitrogen flow of 60 ml/min produces 72 wt.% of oil, 13.5 wt.% of gas and 12.5 wt.% of char. The kinetic parameters of the first peak do not vary with heating rate, while those of the second and the third peak increase and decrease, respectively, with an increasing heating rate, proving the existence of complex reaction mechanisms for both cases.  相似文献   

11.
升温速率对生物质热解的影响   总被引:4,自引:0,他引:4  
稻壳、稻秆及麦秆是中国主要的农业废弃物,如何综合、有效地利用这些农业废弃物进行资源化研究显得十分必要。热解是热化学转化中最为基本的过程,是气化、液化及燃烧过程的初始和伴生反应,对热解的分析有助于热化学转化过程控制及高效转化工艺的开发。目前,国内外对生物质及其组分的热解已有大量的研究,但对中国主要的农业废弃物稻壳、稻秆及麦秆的研究较少。本研究利用热重和红外联用技术深入研究了升温速率对三种典型生物质热解气体产物的影响,并对生物质的热解动力学及热解气体产物的析出规律进行实时在线分析。  相似文献   

12.
稻秆半焦与CO2气化反应特性的研究   总被引:5,自引:2,他引:3  
利用三种热解炉装置,分别在热解终温550℃~950℃、加热速率0.1K/s~500K/s下热解制取稻秆半焦。采用等温热重法,在STA409综合热分析仪上进行了稻秆半焦与CO2的气化实验,考察了热解终温、热解速率以及气化温度对半焦气化反应性的影响。研究表明,热解条件对稻秆半焦的反应性影响很大。在热解终温为550℃~950℃时,随着热解温度的提高,其气化反应性呈下降趋势;热解速率越高,其气化反应性越好。在850℃~950℃,提高气化温度能提高稻秆半焦与CO2的反应性。采用扫描电镜技术观测了0.1K/s和500K/s 两种热解速率下半焦的表面形貌。结果显示,后者具有更加丰富的孔隙结构,且大孔结构明显多于前者。采用混合反应模型描述了稻秆半焦与CO2的气化反应过程,求取了反应动力学参数。  相似文献   

13.
张庆轩  李金涛  张梦 《应用化学》2018,35(12):1470-1477
低温氧化是注空气采油及原位燃烧采油技术中的重要化学反应,为深入认识原油在有氧环境下复杂热反应过程中的低温氧化特性,我们采用热重/差热分析法(TG/DTA)研究了线性升温和等温条件下马瑞(Merey)原油的热反应行为。 结果表明,Merey原油在空气及线性升温条件下的受热过程分4个阶段:气化段、低温氧化段、热解段和高温氧化段;相邻阶段的物理、化学主导过程的重叠增加了分析原油热反应特征的难度。 升温速率提高,气化段和低温氧化段的终止温度不变;热解段和高温氧化段的终止温度以及热解段的峰温随升温速率的增加而升高。 N2气与空气下Merey原油的热重/微分热重(TG/DTG)数据对比表明,升温速率越高,空气下的高温氧化段与热解段重叠程度越大,这有利于燃烧但会降低原油采收率。 空气下等温时的TG/DTA结果表明随升温速率增加,升温至300 ℃时的失重率降低,不利于原油轻组分的气化。 反应温度越高,气化过程时间越长,失重分数越大。 Merey原油在低于300℃时低温氧化反应不是主导反应。  相似文献   

14.
The pyrolysis, combustion, and gasification behaviors of deoiled asphalt were studied by a thermogravimetric analyzer and the kinetics were also analyzed using a multi-stage first-order integral model. All the experiments were conducted at non-isothermal conditions with heating rates range of 10–40 K min?1 under N2 (pyrolysis), air (combustion), or CO2 (gasification) atmosphere, respectively. The results showed that, for pyrolysis, the reaction mainly occurred between 498 and 798 K and could be divided into two stages: the first was caused by the volatilization of small molecules and the second probably due to the cracking reactions. For combustion, the mass loss process could be divided into three stages: the devolatilization and oxidation first, the ignition and combustion of the volatiles second, and finally the combustion of the formed char. Under CO2 atmosphere, the mass loss behavior was similar with that of the N2 atmosphere at lower temperatures, but when the temperature was higher than 1,233 K, the gasification reaction obviously happened. The results of kinetic investigation showed that the multi-stage first-order integral method agreed well with the above experiments.  相似文献   

15.
蔗渣的热解与燃烧动力学特性研究   总被引:5,自引:2,他引:5  
利用热重分析仪对蔗渣在不同升温速率下的热解、燃烧失重特性进行了研究。采用Friedman法对反应过程中可能存在的反应机理进行初步判断,蔗渣热解过程由其主要组分半纤维素、纤维素和木质素热解的三个独立的平行反应来描述,相应的反应活化能分别为203.92 kJ·mol-1、238.50 kJ·mol-1和77.11 kJ·mol-1; 蔗渣燃烧过程分为两段,第一段类似于其热解过程,第二段由木质素热解和残焦燃烧共同组成的连续反应,反应活化能为255.57 kJ·mol-1和159.11 kJ·mol-1。通过非线性回归法拟合获得的曲线与实验曲线基本一致,证实了蔗渣的热解、燃烧过程中存在着上述假定的反应机理。  相似文献   

16.
An analysis of the evaporation process of n-hexadecane in a thermogravimetric apparatus was carried out. n-Hexadecane represents a typical example of a high boiling point compound and its study is interesting for understanding those processes where vaporization takes place in parallel with pyrolysis during thermal treatment. The process has been studied under different operating conditions: nitrogen and air atmospheres, and isothermal and dynamic runs with three different heating rates from 5 K/min to 20 K/min. The experimental data were satisfactorily correlated to a n-order model with zero process order and the same apparent activation energy for all runs, but the exponential factors of the different runs depended on the initial mass and the heating rate. The experimental results were compared with those predicted considering the diffusion process inside the crucible, taking into account the vapor pressure and the diffusion coefficient of n-hexadecane. A parameter, product of these two variables, can be estimated from a single TG run, so the vaporization process in other equipment and/or operating conditions can also be estimated.  相似文献   

17.
Beypazari lignite was investigated by differential scanning calorimetry (DSC), thermogravimetry (TG), high pressure thermogravimetry (HPTG) and combustion cell experiments. All the experiments were conducted at non-isothermal heating conditions with a heating rate of 10°C min?1, in the temperature range of 20–700°C. DSC-TG data were analysed using an Arrhenius-type reaction model assuming a first-order reaction. For the HPTG data the Coats and Redfern equation was used for kinetic analysis. In the combustion cell experiments the Fassihi and Brigham approach was used in order to calculate kinetic data. Finally a comparison is made between the kinetic results.  相似文献   

18.
Equations have been derived to describe the chemical kinetic factors that affect the rate of formation of products when a mixture of solid components (tobacco) decomposes on heating. Using these equations, a computer model of tobacco pyrolysis has been constructed which can calculate the gas formation rate/temperature profile from a given set of reaction parameters. By comparing the predictions of the model with experimental results at heating rates between 0.8 and 25 deg C s?1, a generalised kinetic mechanism for the thermal decomposition of tobacco has been developed. For carbon monoxide and other low molecular weight gases, the mechanism is an independent formation of each gas from one solid tobacco component in each temperature region. Pyrolysis of some individual tobacco components in other studies suggests that each gas is actually produced from many components in each temperature region. This more complex mechanism is kinetically equivalent to the deduced mechanism of independent formation from one component.The region in which a given decomposition reaction takes place moves to higher temperatures as the heating rate increases. The amounts of gases formed over any temperature region from 200 to 900°C can be calculated for a given heating rate using the mechanism and the kinetic constants. The present results imply that 75–90% of the carbon monoxide produced by tobacco decomposition at temperatures up to 900°C during a puff on a cigarette corresponds to that formed in the “low temperature region” (200–450°C) defined for pyrolysis experiments at the lower heating rates of 1–10 deg C s?1.  相似文献   

19.
Thermal behavior of textile waste was studied by thermogravimetry at different heating rates and also by semi-batch pyrolysis. It was shown that the onset temperature of mass loss is within 104–156 °C and the final reaction temperature is within 423–500 °C. The average mass loss is 89.5%. There are three DTG peaks located at the temperature ranges of 135–309, 276–394 and 374–500 °C, respectively. The first two might be associated with either with decomposition of the hemicellulose and cellulose or with different processes of cellulose decomposition. The third peak is possibly associated to a synthetic polymer. At a temperature of 460 °C, the expected amount of volatiles of this waste is within 85–89%. The kinetic parameters of the individual degradation processes were determined by using a parallel model. Their dependence on the heating rate was also established. The pyrolysis rate is considered as the sum of the three reaction rates. The pyrolysis in a batch reactor at 700 °C and nitrogen flow of 60 ml/min produces 72 wt.% of oil, 13.5 wt.% of gas and 12.5 wt.% of char. The kinetic parameters of the first peak do not vary with heating rate, while those of the second and the third peak increase and decrease, respectively, with an increasing heating rate, proving the existence of complex reaction mechanisms for both cases.  相似文献   

20.
生物质焦制备条件对其燃烧反应特性的影响   总被引:1,自引:0,他引:1  
在热重分析仪上,研究了生物质焦的制备条件对其燃烧反应特性的影响。生物质焦由闪速裂解技术制得,裂解温度为 748 K、773 K和823 K;原料含水质量分数为0、7.0%和11.3%。研究发现,生物质焦中挥发性物质的质量分数和H/C质量比随裂解温度的增加而降低,其燃烧反应性随裂解温度的增加而降低;与高裂解温度条件下制得的生物质焦相比,低裂解温度条件下制得的生物质焦具有较高的反应活化能和对燃烧温度更敏感。原料含水量对生物质焦的燃烧反应特性影响很小;但对高裂解温度条件下制得的生物质焦中的挥发性组分含量有较大的影响。简化的生物质焦本征燃烧反应幂函数动力学模型可以很好地描述其燃烧行为。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号