首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alloys and intermetallic compounds of Au with the 3d transition metals Fe, Co, and Ni are nonequilibrium phases that have many useful potential applications as catalytic, magnetic, optic, and multifunctional magneto-optic materials. However, the atomically ordered Au-M (M = Fe, Co, Ni) intermetallics are particularly elusive from a synthetic standpoint. Here we report the low-temperature solution synthesis of the L12 (Cu3Au-type) intermetallic compounds Au3Fe, Au3Co, and Au3Ni using n-butyllithium as a reducing agent. Reaction pathway studies for the Au3Co system indicate that Au nucleates first, followed by Co incorporation to form the intermetallic. The nonequilibrium intermetallic nanocrystals have been characterized by powder XRD, TEM, EDS, selected area electron diffraction, and nanobeam electron diffraction, which collectively confirm the compositions and superlattice structures.  相似文献   

2.
Intermetallics adopt an array of crystal structures, boast diverse chemical compositions, and possess exotic physical properties that have led to a wide range of applications from the biomedical to aerospace industries. Despite a long history of intermetallic synthesis and crystal structure analysis, identifying new intermetallic phases has remained challenging due to the prolonged nature of experimental phase space searching or the need for fortuitous discovery. In this Minireview, new approaches that build on the traditional methods for materials synthesis and characterization are discussed with a specific focus on realizing novel intermetallics. Indeed, advances in the computational modeling of solids using density functional theory in combination with structure prediction algorithms have led to new high-pressure phases, functional intermetallics, and aided experimental efforts. Furthermore, the advent of data-centered methodologies has provided new opportunities to rapidly predict crystal structures, physical properties, and the existence of unknown compounds. Describing the research results for each of these examples in depth while also highlighting the numerous opportunities to merge traditional intermetallic synthesis and characterization with computation and informatics provides insight that is essential to advance the discovery of metal-rich solids.  相似文献   

3.
铂基金属间化合物纳米晶因其高度有序的结构特点,优异的抗氧化及耐腐蚀性能,作为电极材料被广泛应用于各类电催化反应,目前已有的PtCo金属间化合物纳米晶在燃料电池阴极反应(氧还原反应)中的活性和稳定性均达到了美国能源部(DOE) 2020年的目标。为了进一步提高金属间化合物纳米晶的电催化性能,需要对影响纳米晶电催化性能的因素进行深入研究。本文综述了铂基金属间化合物纳米晶的研究现状,着重介绍了铂基金属间化合物的可控合成策略及其在电催化领域的最新研究进展,分析总结了该领域存在的问题,并展望了其未来发展方向。  相似文献   

4.
The structural properties, heats of formation, elastic properties, and electronic structures of four compositions of binary Al-Li intermetallics, Al3Li, AlLi, Al2Li3, and Al4Li9, are ana-lyzed in detail by using density functional theory. The calculated formation heats indicate a strong chemical interaction between Al and Li for all the Al-Li intermetallics. In partic-ular, in the Li-rich Al-Li compounds, the thermodynamic stability of intermetallics linearly decreases with increasing concentration of Li. According to the computational single crystal elastic constants, all the four Al-Li intermetallic compounds considered here are mechani-cally stable. The polycrystalline elastic modulus and Poisson's ratio have been deduced by using Voigt, Reuss, and Hill approximations, and the calculated ratios of bulk modulus to shear modulus indicate that the four compositions of binary Al-Li intermetallics are brittle materials. With the increase of Li concentration, the bulk modulus of Al-Li intermetallics decreases in a linear manner.  相似文献   

5.
《中国化学快报》2022,33(10):4517-4530
Fluoroalkyl-containing organic compounds have exhibited wide applications in the field of pharmaceuticals, agrochemicals and materials science due to their outstanding properties such as biological activity, metabolic stability, lipophilicity, excellent chemical and thermal stability. Therefore, various synthetic strategies have been developed for the construction of fluoroalkyl-containing compounds, using highly active fluorinating reagents and fluorinated building blocks. Recently, the use of easily available and inexpensive trifluoroacetic anhydride (TFAA) and its anhydride analogues has attracted great attention to access numerous fluoroalkyl-containing compounds through cyclization and coupling reactions. In this review, we summarized the recent advances in the synthesis of fluoroalkylated compounds using fluoroalkyl anhydrides as reagents. This review aims to provide a reference for researchers on how to develop new synthetic straregies of fluorine-containing organic compounds and achieve kilograms or even tons preparation of fluorine-containing organic compounds using fluoroalkyl anhydrides.  相似文献   

6.
Wang Z  Yu J  Xu R 《Chemical Society reviews》2012,41(5):1729-1741
Zeolites are an important class of materials which are widely used in industry as catalysts, adsorbents and ion-exchangers. Their superior properties are closely related to their unique porous framework structure, as well as composition and morphology. The ever-growing needs for zeolitic materials in applications inspire us to think of the rational synthesis of zeolites with desired structures and properties. However, rationalization of zeolitic materials remains one of the most challenging issues in the zeolite research field due to their unclear formation mechanism. Despite this, many efforts have been devoted to synthesize zeolites in a more rational way. In this tutorial review, first, we demonstrate how the geometrical characteristics of zeolite frameworks affect the catalytic performances of the resulting materials; then, we present recent advances in synthetic innovations to target materials, and we further highlight the developments in computer simulations toward ab initio design and synthesis; finally, the future perspective on the rational synthesis of zeolitic materials with desired functions and structures will be described.  相似文献   

7.
8.
《中国化学快报》2023,34(11):108515
Rhodium (Rh) has received widespread attention in fundamental catalytic research and numerous industrial catalytic applications. Compared to homogeneous catalysts, Rh-based nanomaterials as heterogeneous catalysts are much easier to separate and collect after usage, making them more suitable for commercial use. To this purpose, there has been a constant demand in constructing stable and highly active Rh-based nanomaterials. In contrast to Rh-based solid solutions with a random distribution of metallic atoms in the lattice, Rh-based intermetallic compounds (IMCs) with a fixed stoichiometric ratio and an ordered atomic arrangement can ensure the homogenous distribution of active sites and structural stability in the catalytic process. In this review, we concentrate on the fabrication of Rh-based IMCs for catalytic applications. Various synthetic methods and protocols for the controlled preparation of Rh-based IMC are illustrated. Meanwhile, the catalytic applications and corresponding catalytic mechanisms are discussed. In addition, personal perspectives about the remaining challenges and prospects in this field are provided. We believe this review will be useful in directing the development of Rh-based IMC catalysts for heterogeneous catalysis.  相似文献   

9.
Intermetallic compounds are very promising materials for a range of applications. In this mini-review, the cathodic deposition and anodic oxidation of intermetallic compounds are discussed, and modern approaches to determining the phase composition of metallic systems using electrochemical techniques are considered. The conditions for electrochemical formation of some typical intermetallic compounds in a range of systems in various media are summarized in tabular form.  相似文献   

10.
This account provides an overview of current research activities on nanoparticles containing the earth‐abundant and inexpensive element copper (Cu) and Cu‐based nanoparticles, especially in the field of environmental catalysis. The different synthetic strategies with possible modification of the chemical/ physical properties of these nanoparticles using such strategies and/or conditions to improve catalytic activity are presented. The design and development of support and/or bimetallic systems (e. g., alloys, intermetallic, etc.) are also included. Herein, we report synthetic approaches of Cu and Cu‐based nanoparticles (monometallic copper, bimetallic copper and copper (II) oxide nanoparticles/nanostructures) and impregnation of such nanoparticles onto support material (e. g., Co3O4 nanostructure), along with their applications as environmental catalyst for various oxidation and reduction reactions. Finally, this account provides necessary advances and perspectives of Cu‐based nanoparticles in the environmental catalysis.  相似文献   

11.
贠潇如  陈宇方  肖培涛  郑春满 《电化学》2022,28(11):2219004
水系锌离子电池具有功率密度高、环境友好、安全性高、低成本和锌资源丰富等优点,被认为具有潜力成为下一代电化学储能系统。然而,正极材料较差的电化学性能制约了水系锌离子电池的未来发展。尽管氧化锰、氧化钒、普鲁士蓝类似物、有机材料等多种材料已被广泛研究,设计具有高性能的理想正极材料仍面临着巨大挑战。无氧钒基化合物由于具有高的电导率、大的层间距、低的离子扩散势垒和高的理论比容量,受到越来越多的关注。本文总结了无氧钒基化合物的研究进展,包括电极材料的设计、改善其电化学性能的有效途径以及复杂的储能机制,提出了无氧钒基化合物目前面临的挑战和未来的发展前景,为进一步制备新型高性能钒基正极材料提供指导。  相似文献   

12.
Organic electrode materials have application potential in lithium batteries owing to their high capacity, abundant resources, and structural designability. However, most reported organic cathodes are at oxidized states (namely unlithiated compounds) and thus need to couple with Li-rich anodes. In contrast, lithiated organic cathode materials could act as a Li reservoir and match with Li-free anodes such as graphite, showing great promise for practical full-battery applications. Here we summarize the synthesis, stability, and battery applications of lithiated organic cathode materials, including synthetic methods, stability against O2 and H2O in air, and strategies to improve comprehensive electrochemical performance. Future research should be focused on new redox chemistries and the construction of full batteries with lithiated organic cathodes and commercial anodes under practical conditions. This Minireview will encourage more efforts on lithiated organic cathode materials and finally promote their commercialization.  相似文献   

13.
Covalent triazine frameworks(CTFs) as a new type of porous organic polymers(POPs) with nitrogen-rich content, high chemical stability, visible light sensitive, metal-free and fully conjugated structure, have gained considerable attention in the last ten years owing to their great potential in extensive applications, especially for photocatalysis systems. In this review, we propose to provide current progress in the design and synthesis of CTFs, along with an emphasis on their photocatalytic applications. Firstly, a brief background including the development of photocatalytic areas is provided. Then, synthetic strategies of CTFs are described and compared. Furthermore, the evolution of CTF materials in photocatalysis fields and strategies for enhancing photocatalytic performance is presented. Finally, some perspectives and challenges on synthesizing high crystalline CTFs and designing excellent catalytic performance of CTF materials are discussed, inspiring the development of CTF materials in photocatalytic applications.  相似文献   

14.
Owning the merits of low-cost, unique electronic and geometric properties, atomically dispersed M-N-C materials have been extensively examined as robust electrocatalysts for many important electrochemical reactions. Nevertheless, it remains a grand synthetic challenge to fabricate such materials with a high concentration of isolated metal active sites, as the formation of metal clusters/nanoparticles seems to be inevitable during the calcination process due to the high surface free energy of single-atom metals. As a result, although M-N-Cs have been successfully tuned to display remarkable activities per metal atomic site, their overall catalytic performances are still unsatisfactory. In this current opinion article, we summarize recent advances in innovative strategies to increase the active-site density of M-N-Cs and also propose the future opportunities and challenges for fostering the practical application of M-N-Cs in electrochemical devices.  相似文献   

15.
16.
Covalent-organic frameworks (COFs), being a new member of the crystalline porous materials family, have emerged as important materials for energy storage/conversion/generation devices. They possess high surface areas, ordered micro/mesopores, designable structures and an ability to precisely control electro-active groups in their pores, which broaden their application window. Thanks to their low weight density, long range crystallinity, reticular nature and tunable synthesis approach towards two and three dimensional (2D and 3D) networks, they have been found suitable for a range of challenging electrochemical applications. Our review focuses on the progress made on the design, synthesis and structure of COFs and their composites for various energy applications, such as metal-ion batteries, supercapacitors, water-splitting and solar cells. Additionally, attempts have been made to correlate the structural and mechanistic characteristics of COFs with their applications.  相似文献   

17.
蛋黄-蛋壳结构独特的纳米结构及特性,使其在很多领域中具有潜在的应用价值,因此近年来受到了广泛关注.本综述总结了使用蛋黄-蛋壳纳米结构作为纳米反应器的研究进展.从合成策略出发,主要强调最近五年合成蛋黄-蛋壳纳米结构的最新研究进展.通过光催化,甲烷重整和电催化等反应作为典型的反应过程,重点讨论蛋黄-蛋壳结构纳米反应器在催化领域的应用,并对该领域未来的发展进行了展望.  相似文献   

18.
Azulene, an isomer of naphthalene, has become one of hot chemical structures in the research field of functional materials, due to its anti-Kasha’s rule emissions and unusual physicochemical properties (e.g., photophysical, electrochemical, and photoelectrochemical properties). In the past, the synthesis of azulene-based compounds is relatively inconvenient. Recently, there have been more and more reports about the synthesis strategies of the azulene-based compounds for finely tuning the physicochemical properties. In this article, we introduce several synthetic methods for kinds of azulene-based compounds which has unusual physicochemical properties. With these convenient methods and unique physicochemical properties, azulene-based compounds can be applied into many fields such as specific bioimaging, advanced molecular switches, organic field-effect transistor (OFET), organic light emitting diode (OLED), solar cells, and so forth. And these properties are also summarized here.  相似文献   

19.
An emerging class of heterostructures with unprecedented (photo)electrocatalytic behavior, involving the combination of fullerenes and low‐dimensional (LD) nanohybrids, is currently expanding the field of energy materials. The unique physical and chemical properties of fullerenes have offered new opportunities to tailor both the electronic structures and the catalytic activities of the nanohybrid structures. Here, we comprehensively review the synthetic approaches to prepare fullerene‐based hybrids with LD (0D, 1D, and 2D) materials in addition to their resulting structural and catalytic properties. Recent advances in the design of fullerene‐based LD nanomaterials for (photo)electrocatalytic applications are emphasized. The fundamental relationship between the electronic structures and the catalytic functions of the heterostructures, including the role of the fullerenes, is addressed to provide an in‐depth understanding of these emerging materials at the molecular level.  相似文献   

20.
The intermetallic phase control is a promising strategy to optimize the physicochemical properties of ordered intermetallic compounds and engineer their performance in various (electro)catalytic reactions. However, the intermetallic phase-dependent catalytic performance is still rarely reported because of the difficulty in synthesizing ordered intermetallics with precisely controlled phase structures at atomic level, especially having ordered mesoscopic structure/morphology. Here, we successfully reported a precise synthesis of two phase-pure mesoporous intermetallic gallium-platinum (meso-i-Ga-Pt) nanoparticles, including meso-i-Ga3Pt5 with an orthorhombic space group and meso-i-Ga1Pt1 with a non-symmorphic chiral cubic space group. The intermetallic phase control of ordered meso-i-Ga-Pt nanoparticles was realized by carefully tuning the induced Ga salts with different anions that optimized the free energies during the synthesis. The intermetallic phase-dependent catalytic performance of ordered meso-i-Ga-Pt was systematically evaluated for oxygen reduction reaction (ORR) electrocatalysis, with completely opposite catalytic performance in alkaline media. Interestingly, ordered meso-i-Ga1Pt1 catalyst with chiral atomic arrangements disclosed unexpected high ORR activity and stability with 5.9 and 3.2 enhancement factors in mass activity compared to those of meso-i-Ga3Pt5 and commercial Pt/C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号