首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
We show that primordial black holes can be formed in the matter-dominated era with gravity described by the Brans–Dicke theory. Considering an early matter-dominated era between inflation and reheating, we found that the primordial black holes formed during that era evaporate at a quicker rate than those of early radiation-dominated era. Thus, in comparison with latter case, less number of primordial black holes could exist today. Again the constraints on primordial black hole formation tend towards the larger value than their radiation-dominated era counterparts indicating a significant enhancement in the formation of primordial black holes during the matter-dominaed era.  相似文献   

4.
In this paper it has been shown that the neutrino bulk viscous stresses can give rise to the late time acceleration of the universe. It is found that a number of spatially flat FRW models with a negative deceleration parameter can be constructed using neutrino viscosity and one of them mimics a ΛCDM model. This does not require any exotic dark energy component or any modification of gravity.  相似文献   

5.
It is shown that our 3 + 1 Brane Einstein Universe is a trapped shell in a Higher Dimensional spacetime (Bulk). It is also shown that the Israel Condition acts like a pressure to trap matter in Einstein's Universe, and that if we overcome this pressure, we can make a particle leave Einstein's Universe and enter the Bulk. The conditions that allow the entrance to the Bulk permit its use to send signals or particles faster than the speed of the light, when seen from the Brane due to Brane Lensing. However, in the Bulk the particles remain subluminal. Our model differs from all the standard Braneworlds models, because all matter is trapped in this 3 + 1 Einstein Shell, independently of what the Standard Model might impose. What we propose is a new Braneworld Model using some of the features of the Chung-Freese Model, plus a way to overcome the pressure from the Israel Condition. Our model will remotely resemble the Davoudias Hewett, Rizzo modifications made to Randall-Sundrum Model that allow fermions (not only gravitons) to enter the Bulk, although we must outline that we are proposing a different idea.  相似文献   

6.
We consider that the observable cosmological constant is the sum of the vacuum (Avac) and the induced term (Aind - 3m^2/4) with m being the ultra-llght masses (≈ Hubble parameter) implemented in the theory from supergravities arguments and non-minimal coupling. In the absence of a scalar buildup of matter fields, we study its effects on spontaneous symmetry breaking with a Higgs potential and show how the presence of the ultra-light masses yields some important consequences for the early universe and new constraints on the Higgs and electroweak gauge bosons masses.  相似文献   

7.
We calculate the entropy of the fermion field in the NUT-Kerr-Newman black holes in the background of the de Sitter spacetime by using the improved brick-wall method and the membrane model.Here the Euler characteristic of the black holes is over two.The results show that,as the cut-off is properly chosen,the entropy in the black hole satisfies the Bekenstein-Hawking area law.  相似文献   

8.
9.
All known stationary black hole solutions in higher dimensions possess additional rotational symmetries in addition to the stationary Killing field. Also, for all known stationary solutions, the event horizon is a Killing horizon, and the surface gravity is constant. In the case of non-degenerate horizons (non-extremal black holes), a general theorem was previously established [24] proving that these statements are in fact generally true under the assumption that the spacetime is analytic, and that the metric satisfies Einstein’s equation. Here, we extend the analysis to the case of degenerate (extremal) black holes. It is shown that the theorem still holds true if the vector of angular velocities of the horizon satisfies a certain “diophantine condition,” which holds except for a set of measure zero.  相似文献   

10.
This paper deals in the thermodynamic properties of Einstein-Gauss-Bonnet and Einstein-Yang-Mills-Gauss-Bonnet black holes. It exhibits the various stable and unstable phases of the black holes in these two modified gravity theories. In the first section, that reveals the various aspects of Einstein-Gauss-Bonnet black holes, we chose to study the changes in the Hawking Temperature with variations in the radius of event horizon (r) and charge (Q); and tried to justify them physically. Secondly in case of Einstein-Yang-Mills-Gauss-Bonnet black holes, we have attempted to compare the changes in the various thermodynamic parameters with varying r and Q; with the Einstein-Gauss-Bonnet black holes at a macroscopic level. Here we have considered the Yang Mills tensor, electromagnetic Lagrangian added to the action integrand. Again this very work deals in drawing out the similarities between these two types of black holes, thereby throwing some light on the aspect of black hole stability. Later we have also introspected the effects of the Gauss-Bonnet coupling parameter α, whose function (6αr), is added as a correction term to the black hole entropy. We have especially focused on what changes does it have upon the nature of the plots as to whether it enhances or reduces the effect of Q on the behavior of the curves. Finally this paper has also kept an eye at estimating the stability domains of the black holes described in these two gravity theories.  相似文献   

11.
I argue that quantum theory can, and in fact must, be applied to the Universe as a whole. After a general introduction, I discuss two concepts that are essential for my chain of arguments: the universality of quantum theory and the emergence of classical behaviors by decoherence. A further motivation is given by the open problem of quantum gravity. I then present the main ingredients of quantum cosmology and discuss their relevance for the interpretation of quantum theory. I end with some brief epistemological remarks.  相似文献   

12.
13.
In this paper, we study interacting extended Chaplygin gas as dark matter and quintessence scalar field as dark energy with an effective Λ-term in Lyra manifold. As we know Chaplygin gas behaves as dark matter at the early universe while cosmological constant at the late time. Modified field equations are given and motivation of the phenomenological models discussed in details. Four different models based on the interaction term are investigated in this work. Then, we consider other models where Extended Chaplygin gas and quintessence field play role of dark matter and dark energy respectively with two different forms of interaction between the extended Chaplygin gas and quintessence scalar field for both constant and varying Λ. Concerning to the mathematical hardness of the problems we discuss results numerically and graphically. Obtained results give us hope that proposed models can work as good models for the early universe with later stage of evolution containing accelerated expansion.  相似文献   

14.
We extended the Parikh-Wilczek’s method to calculate the tunneling radiation of charged and magnetized particles from the event horizon and the cosmological horizon of the Reissner-Nordstr?m-de Sitter black hole with magnetic charges. We reconstructed the electromagnetic field tensor and recalculated the Lagrangian of the field corresponding to the source with electric and magnetic charges. By viewing the eclectic and magnetic charges as an equivalent electric charge, we obtained the tunneling rate of the charged and magnetized particles. Our calculation supports the conclusion given by Parikh and Wilczek that the emission spectrum is no longer purely thermal, and the emission process supports the information conservation.  相似文献   

15.
The principal focus of this paper is to study the strong field gravitational lensing in a magnetic charged Reissner-Nordstr?m black hole based on the method of cosmic string. We obtain the new coefficients including the tension of the cosmic strings, the strong field deflection limit coefficients, the deflection angle and the magnification, and obtain the relationship between the cosmic string parameter and the new coefficients. The result shows that the cosmic strings have some important effect on the gravitational lensing in a black hole when they pierce it.  相似文献   

16.
17.
I propose an experiment that may be performed, with present low temperature and cryogenic technology, to reveal Wheeler’s quantum foam. It involves coupling an optical photon’s momentum to the center of mass motion of a macroscopic transparent block with parameters such that the latter is displaced in space by approximately a Planck length. I argue that such displacement is sensitive to quantum foam and will react back on the photon’s probability of transiting the block. This might allow determination of the precise scale at which quantum fluctuations of space–time become large, and so differentiate between the brane-world and the traditional scenarios of spacetime.  相似文献   

18.
In this paper we examine some proposals to disprove the hypothesis that the interaction between mind and matter causes the collapse of the wave function, showing that such proposals are fundamentally flawed. We then describe a general experimental setup retaining the key features of the ones examined, and show that even a more general case is inadequate to disprove the mind-matter collapse hypothesis. Finally, we use our setup provided to argue that, under some reasonable assumptions about consciousness, such hypothesis is unfalsifiable.  相似文献   

19.
A novel detection of sub-GeV dark matter is proposed in the paper.The electron cloud is boosted by the dark matter and emits an electron when it is dragged back by the heavy nucleus,namely the coherent scattering of the electron cloud of the atom.The survey in the x-ray diffraction shows that the atomic form factors are much more complex than the naive consideration.The results of the relativistic Hartree-Fock(RHF) method give non-trivial shapes of the atoms.The detailed calculation of the recoi...  相似文献   

20.
We assess the scientific value of Oppenheimer’s research on black holes in order to explain its neglect by the scientific community, and even by Oppenheimer himself. Looking closely at the scientific culture and conceptual belief system of the 1930s, the present article seeks to supplement the existing literature by enriching the explanations and complicating the guiding questions. We suggest a rereading of Oppenheimer as a figure both more intriguing for the history of astrophysics and further ahead of his time than is commonly supposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号