首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The excess molar volumes VmE {x(CH3OH or CH3CH2OH or CH3(CH2)2OH or CH3CH(OH)CH3 + (1 - x){CH3(CH2)2}2O or CH3C(CH3)2OCH3 or CH3CH2C(CH3)2OCH3} have been calculated from measured values of density over the whole composition range at the temperature 298.15 K in order to investigate OH … O specific interactions. The results are explained in terms of the strong self-association of the alkanols, the specific interaction between the alkanol, and the ether molecules and packing effects upon mixing. The experimental Vmh results presented here, together with the previously reported data for the molar excess enthalpy HmE, has been used to test the Extended Real Associated Solution (ERAS) model.  相似文献   

2.
This paper reports excess molar enthalpies, HmE, and excess molar volumes, VmE, of the binary systems {propyl propanoate + o-xylene}, {propyl propanoate + m-xylene} and {propyl propanoate + p-xylene} at the temperature 298.15 K and atmospheric pressure, over the whole composition range. VmE was calculated from the experimental measurement of the corresponding densities, while HmE was measured directly. The excess magnitudes were correlated to a Redlich-Kister type equation. Finally, we will discuss the results of the three mixtures studied here and by comparison with other binary systems containing propyl propanoate and a benzene-based compound previously published.  相似文献   

3.
Densities of {(1−x)CH3(CH2)n−1OH + xCH3CN} for n=1, 2, 3 or 4 have been determined as a function of composition at 288.15, 293.15, 298.15 and 303.15 K at atmospheric pressure using a vibrating-tube densimeter (Anton Paar DMA 4500, resolution 1×10−5 g cm−3). Excess molar volumes were calculated. The VmE values were negative for acetonitrile–methanol mixtures and sigmoid for acetonitrile–alkanols (C2–C4) mixtures over the complete mole fraction range. VmE values increase in a positive direction with increase in chain length of the alkanols and with the temperature. The Extended Real Associated Solution Model (ERAS-Model) calculations allowing for self-association for the alkanols and complex formation between acetonitrile and alkanols have been used to correlate experimental data. The model is able to reproduce the asymmetrical VmE behavior of the studied systems, although agreement between theoretical and experimental values is less satisfactory for some concentration ranges.  相似文献   

4.
《Fluid Phase Equilibria》1997,130(1-2):207-222
The excess molar volumes, VmE, have been calculated from measured density values over the whole composition range at the temperatures 298.15 K and 308.15 K and under atmospheric pressure for the 12 mixtures {hydrocarbon (heptane, 2,2,4-trimethylpentane, 1-heptene or toluene) + branched chain ether (methyl 1,1-dimethylethyl ether, ethyl 1,1-dimethylethyl ether or methyl 1,1-dimethylpropyl ether)}. The excess volumes of all the mixtures except (toluene + ether) are positive over the whole composition range. The experimental results have been correlated and compared with the results from Prigogine-Flory-Patterson (PFP) theory.  相似文献   

5.
Densities for binary mixtures of diethylamine and s-butylamine with acetonitrile have been measured at 288.15, 293.15, 298.15 and 303.15 K using a vibrating-tube densimeter. Excess molar volumes (VmE) were determined. Both systems exhibit negative VmE values over the entire composition range in the temperature range studied. ERAS-Model calculations allowing for self-association for the amines and complex formation between acetonitrile and amines were performed. The agreement between theoretical and experimental results is satisfactory only for mole fractions of amines less than 0.50. A simplified version of the model, without the chemical contribution, gives similar results.  相似文献   

6.
Molar excess enthalpies HmE, isobaric heat capacities CP,mE, volumes VmE and isothermal compressibilities κTE for the 1,3-dioxane(3DX) + cyclohexane mixture were measured at 298.15 K, in order to compare to those of the 1,4-dioxane(4DX) + cyclohexane mixture. HmE is endothermic and the maximum value about 1.5 kJ mol−1 at x ≈ 0.45, and lower than that of the 4DX mixture by about 80 J mol−1. VmE is positive over the whole concentration and the maximum value is about 0.85 cm3 mol−1 at x ≈ 0.45, and lower than that of the 4DX mixture. The above results suggest the energetic unstabilization, resulting in the volume expansion in the mixture. CP,mE shows the characteristic W-shaped concentration dependence, which has maximum at x ≈ 0.45 and two minima at x ≈ 0.1 and 0.9. The maximum CP,mE value for 3DX mixture shifts toward the positive side, compared to that of 4DX mixture. κTE were estimated from speeds of sound, densities, thermal expansion coefficients and isobaric heat capacities of the pure component liquids and the mixtures. The κTE result shows the positive concentration dependence over the whole composition range. The 3DX mixture has the similar thermodynamic properties to the 4DX mixture, despite that 4DX is the nonpolar solvent and 3DX is the dipolar liquid. this means that there exists the local dipolar interaction between 4DX molecules, and the prevalence of “microheterogeneity” in the both mixtures.  相似文献   

7.
Dilatometric measurements of excess volume VE and ultrasonic speed u have been carried out for mixtures of mono-, di-, tri- and tetra(ethylene glycol)s in pyrrolidin-2-one (PY) over the whole mole fraction range at 303.15 K. In the mixture of PY and monoethylene glycol, the VE is positive except for slight negative variation at the high mole fraction of PY. The other three mixtures PY + di-, + tri- and + tetra(ethylene glycol)s show negative VE over the entire composition range in the order di-u with increase in the mole fraction of PY in the case of monoethylene glycol while for other three systems u rises. From these measurements, partial molar quantities ViE and KS,iE have been calculated and analysed. Estimates of isentropic molar quantity KS equal to −(∂V/∂p)S and its excess counterpart KSE have also been computed. The KSE is positive for mono-, and negative for all the other mixtures over the whole composition range.  相似文献   

8.
Monte Carlo (MC) simulations have been carried out for mixtures of Lennard–Jones (LJ) fluids near or in the supercritical region. Excess molar enthalpy at equimolar concentration, Hp,x=0.5E, has been obtained for four kinds of model mixtures each having different combining rule for unlike interactions. The pressure and temperature dependencies of Hp,x=0.5E are investigated. The unique pressure and temperature dependencies of Hp,x=0.5E for real systems such as (ethane+ethene) in the supercritical condition have been reproduced by the present simple model systems. Excess molar internal energies at constant volumes, UV,x=0.5E, are also evaluated. They are compared with Hp,x=0.5E to investigate the volumetric contributions to Hp,x=0.5E or excess molar internal energies at constant pressure, UV,x=0.5E. Calculated UV,x=0.5E for the present model systems are quite simple compared to the excess molar internal energy at constant pressure, UV,x=0.5E. They are very small in magnitude and show linear dependencies on the density of mixtures.  相似文献   

9.
《Fluid Phase Equilibria》2002,198(2):313-329
Excess molar volumes, VmE, at 298.15 K and atmospheric pressure over the entire composition range for binary mixtures of methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol and 1-octanol with dibutylamine are reported. They are calculated from densities measured with a vibrating-tube densimeter. All the excess volumes are large and negative over the whole mole fraction range, indicating strong interactions between unlike molecules, which are more important for the systems involving methanol or ethanol, characterized by the most negative VmE. For the other mixtures, VmE at equimolar composition, is approximately constant. The VmE curves are nearly symmetrical. The VmE and excess molar enthalpies (HmE) of the mixtures studied are consistently described by the ERAS model. The ERAS parameters confirm that the strongest interactions between unlike molecules are encountered in the methanol+dibutylamine system.  相似文献   

10.
Excess molar volumes, V E m, at 25°C and atmospheric pressure, over the entire composition range for binary mixtures of methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol with-methylbutylamine are reported. They are calculated from densities measured with a vibrating-tube densimeter. All the excess volumes are large and negative over the entire composition range. This indicates strong interactions between unlike molecules, which are greatest for the system involving methanol, characterized by the most negative V E m. For the other solutions, V E m at equimolar composition, is approximately the same. The V E m curves vs. mole fraction are nearly symmetrical. The ERAS model is applied to 1-alkanol + N-methylbutylamine, and 1-alkanol + diethylamine systems. The ERAS parameters confirm that the strongest interactions between unlike molecules are encountered in solutions with methanol. The model consistently describes V E m and excess molar enthalpies H E m of the mixtures studied.  相似文献   

11.
Excess molar enthalpies HE and excess molar volumes VE have been measured, as a function of mole fraction x1, at 298.15 K and atmospheric pressure for the five liquid mixtures (x11,4-C6H4F2 + x2n-ClH2l+2), l = 7, 8, 10, 12 and 16. In addition, HE and excess molar heat capacities CPE at constant pressure have been determined for the two liquid mixtures (x1C6F6 + x2n-ClH2l+2), l = 7 and 14, at the same temperature and pressure. The instruments used were flow microcalorimeters of the Picker design (the HE version was equipped with separators) and a vibrating-tube densimeter, respectively.

The excess enthalpies of the five difluorobenzene mixtures are all positive and quite large; they increase with increasing chain length l of the n-alkane from HE(x1 = 0.5)/(J mol−1) = 1050 for l = 7 to 1359 for l = 16. The corresponding excess volumes VE are all positive and also increase with increasing l: VE(x1 = 0.5)/(cm3 mol−1) = 0.650 for l = 7 and 1.080 for l = 16. Interestingly, the excess enthalphies of the corresponding mixtures with hexafluorobenzene are only about 5% larger, whereas the excess volumes of (x1C6F6 + x2n-ClH2l+2) are roughly twice as large as those of their counterparts in the series containing 1,4-C6H4F2. Specifically, at 298.15 K HE(x1 = 0.5)/(J mol−1) = 1119 for (x1C6F6 + x2n-C7H16) and 1324 for (x1C6F6 + x2n-C14H30), and for the same mixtures VE(x1 = 0.5)/(cm3 mol−1) = 1.882 and 2.093, respectively. The excess heat capacities for both systems are negative and of about the same magnitude as the excess heat capacities of mixtures of fluorobenzene with the same n-alkanes (Roux et al., 1984): CPE(x1 = 0.5)/(J K−1 mol−1) = −1.18 for (x1C6F6 + x2n-C7H16), and −2.25 for (x1C6F6 + x2n-C14H30). The curve CPE vs. (x1 for x1C6F6 + x2n-C14H30) shows a sort of “hump” for x1 0.5, which is presumed to indicate emerging W-shape composition dependence at lower temperatures.  相似文献   


12.
13.
Experimental results are reported of excess molar volumes VE and excess molar enthalpies HE for binary mixtures of 1-propanol, 2-propanol, 1-butanol and 2-butanol with diisopropyl ether (DIPE) and dibutyl ether (DBE) at 298.15 K. A vibrating-tube densitometer was used to determine VE, and HE was measured using a quasi-isothermal flow calorimeter. The applicability of the ERAS model has been investigated for describing the experimental data as well as literature data of alkanol-ether mixtures containing DBE or dipropyl ether (DPE).  相似文献   

14.
Excess molar volumes, VE, and partial molar volumes, i, have been calculated for binary liquid mixtures of anisole with bromobenzene, o-dichlorobenzene, o-chloroaniline and p-dioxane from the results of densities measured at 298.15, 303.15, 308.15 and 313.15 K over the entire range of composition. In the temperature interval studied the values of VE are positive for anisole + p-dioxane, anisole + bromobenzene and anisole + o-dichlorobenzene, whereas negative values are observed for anisole + o-chloroaniline. The negative VE for the latter system was due to specific interactions between mixing components. The positive VE for the remaining systems was ascribed to the dispersion-type interactions.  相似文献   

15.
New experimental data of densities and surface tensions are presented for the binary mixtures of the ionic liquid 1-ethyl-3- methyl imidazolium nitrate([EMIM]NO3) with methanol and ethanol.Measurements were performed at 298.15 K and atmospheric pressure,covering the whole composition range.Excess molar volumes VE and the surface tension deviations Sy have been determined.For the excess molar volumes of binary mixture,there is a region of negative VE at low IL mole fraction,passing through a minimum and then VE increases and becomes positive,showing maximum at higher IL mole fraction.It is shown that the surface tension deviations Sy of[EMIM]NO3 + methanol system are positive but those of[EMIM]NO3 + ethanol system are negative over the entire mole fraction range.  相似文献   

16.
New experimental data of the molar excess enthalpy HE of mixtures containing eight liquids - propylamine + methanol, ethanol, propan-1-ol, butan-1-ol, butylamine + methanol, ethanol, propan-1-ol, butan-1-ol - are presented using a quasi-isothermal flow calorimeter. The results are used for testing the ERAS-model which provides a theoretical concept accounting for the self-association and cross-association of alcohol and amine molecules, as well as for non-associative intermolecular interactions. Excess molar volumes VE are also successfully described by the model. It turns out that the strong cross-association occurring between alcohol and amine molecules is the predominant reason for the remarkably low exothermic values of HE observed for the mixtures studied.  相似文献   

17.
Volume changes on mixing of ternary liquid mixtures of N,N-dimethylformamide and diethyl ketone with 1-alkanols have been measured as a function of composition at 303.15 K. The alkanols include 1-propanol, 1-butanol, 1-pentanol and 1-hexanol. The measured VE values are negative in the mixtures of N,N-dimethylformamide, diethyl ketone and 1-propanol, or 1-butanol. The VE data exhibits an inversion in sign in the mixture containing 1-pentanol and positive excess volumes are observed in the mixture containing 1-hexanol. The measured data are compared with predicted values based upon empirical relations. The excess volume for the binary mixture of N,N-dimethylformamide with diethyl ketone has been measured over the entire range of composition at 303.15 K. The VE values are negative for the binary mixture.  相似文献   

18.
Speeds of sound and densities of glycerol + methanol, glycerol + ethanol and glycerol + 2-propanol, were measured over the entire composition range at 298.15 K. The excess volumes, the isentropic compressibilities, molar isentropic compressibilities and excess molar isentropic compressibilities and excess speeds of sound were estimated from the densities and speeds of sound. The results indicated the presence of interactions between unlike molecules through intermolecular hydrogen bonding. The excess volumes, excess molar isentropic compressibilities and excess speeds of sound of the binary mixtures were fitted to the Redlich–Kister equation. The infrared spectra of glycerol + methanol, glycerol + ethanol and glycerol + 2-propanol have been recorded for various concentrations at room temperature. IR stretching frequencies, bandwidths and relative intensities have been estimated and analysed. Acoustic and spectroscopic measurements showed a good correlation to explain the existence of interactions between unlike molecules through intermolecular hydrogen bonding.  相似文献   

19.
Densities of glycerol + N,N-Dimethylformamide (DMF) and glycerol + water mixtures have been measured over the full range of compositions at 25 and 35°C. Excess molar volumes and excess partial molar volumes, of each system have been calculated. All mixtures show negative values of the excess molar volume due to increased interactions between unlike molecules.  相似文献   

20.
Excess molar volumes at 303.15 K for the binary mixture of ethylene glycol+, diethylene glycol+, triethylene glycol+ and tetraethylene glycol+ γ-butyrolactone were determined from precise density measurements over the whole mole fraction range. The excess molar volumes are positive over the whole mole fraction range for ethylene glycol and diethylene glycol systems. For triethylene glycol and tetraethylene glycol systems, VE curves are sigmoid with a positive lobe at low mole fraction of glycol and a negative lobe at high mole fraction. The excess molar volumes VE, results are interpreted qualitatively in terms of several opposing effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号