首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The second-harmonic generation characteristics in the elastic wave propagation across an infinite layered structure consisting of identical linear elastic layers and nonlinear spring-type interlayer interfaces are analyzed theoretically. The interlayer interfaces are assumed to have identical linear interfacial stiffness but can have different quadratic nonlinearity parameters. Using a perturbation approach and the transfer-matrix method, an explicit analytical expression is derived for the second-harmonic amplitude when the layered structure is impinged by a monochromatic fundamental wave. The analysis shows that the second-harmonic generation behavior depends significantly on the fundamental frequency reflecting the band structure of the layered structure. Two special cases are discussed in order to demonstrate such dependence, i.e., the second-harmonic generation by a single nonlinear interface as well as by multiple consecutive nonlinear interfaces. In particular, when the second-harmonic generation occurs at multiple consecutive nonlinear interfaces, the cumulative growth of the second-harmonic amplitude with distance is only expected in certain frequency ranges where the fundamental as well as the double frequencies belong to the pass bands of the layered structure. Furthermore, a remarkable increase of the second-harmonic amplitude is found near the terminating edge of pass bands. Approximate expressions for the low-frequency range are also obtained, which show the cumulative growth of the second-harmonic amplitude with quadratic frequency dependence.  相似文献   

2.
An analysis of the linear and nonlinear acoustic responses from an interface between rough surfaces in elastoplastic contact is presented as a model of the ultrasonic wave interactions with imperfect interfaces and closed cracks. A micromechanical elastoplastic contact model predicts the linear and second order interfacial stiffness from the topographic and mechanical properties of the contacting surfaces during a loading–unloading cycle. The effects of those surface properties on the linear and nonlinear reflection/transmission of elastic longitudinal waves are shown. The second order harmonic amplitudes of reflected/transmitted waves decrease by more than an order of magnitude during the transition from the elastic contact mode to the elastoplastic contact mode. It is observed that under specific loading histories the interface between smooth surfaces generates higher elastoplastic hysteresis in the interfacial stiffness and the acoustic nonlinearity than interfaces between rough surfaces. The results show that when plastic flow in the contacting asperities is significant, the acoustic nonlinearity is insensitive to the asperity peak distribution. A comparison with existing experimental data for the acoustic nonlinearity in the transmitted waves is also given with a discussion on its contact mechanical implication.  相似文献   

3.
Propagation of elastic phononic waves in layered composite materials is analyzed by introducing nonsmooth periodic coordinates associated with structural specifics of the materials. Spatial scales of the original (smooth) coordinates are estimated by the wave lengths. In terms of the new coordinates, the homogenization procedure occurs naturally from the continuity conditions imposed on elastic displacements and forces at layer interfaces. As a result, higher-order asymptotic approximations describing spatiotemporal ‘macro’- and ‘micro’-effects of wave propagation are obtained in closed form. Such solutions provide visualizations for the wave shapes illustrating their structure induced local details. In particular, beat-wise mode shapes and effective anisotropy of acoustic wave propagation are revealed. The subharmonic beating in wave modes occur when wave lengths orthogonal to layers is about to ‘resonate’ with layer’ thickness. If the wave speed has a non-zero projection along the layers, then phase shifts between the beats are observed in different cross sections perpendicular to the layers.  相似文献   

4.
W. Li  Y. Cho 《Experimental Mechanics》2014,54(8):1309-1318
The use of nonlinear ultrasonic waves has been accepted as a potential technique to characterize the state of material micro-structure in solids. The typical nonlinear phenomenon is generation of second harmonics. Second harmonic generation of ultrasonic waves propagation has been vigorously studied for tracking material micro-damages in unbounded media and plate-like waveguides. However, there are few studies of launching second harmonic guided wave propagation in tube-like structures. Considering that second harmonics could provide useful information sensitive for material degradation condition, this research aims at developing a procedure for detecting second harmonics of ultrasonic guided wave in an isotropic pipe. The second harmonics generation of guided wave propagation in an isotropic and stress-free elastic pipe is investigated. Flexible polyvinylidene fluoride (PVDF) comb transducers are used to measure fundamental wave and second harmonic one. Experimental results show that nonlinear parameters increase monotonically with propagation distance. This work experimentally verifies that the second harmonics of guided waves in pipe have the cumulative effect with propagation distance. The proposed procedure is applied to assessing thermal fatigue damage indicated by nonlinearity in an aluminum pipe. The experimental observation verifies that nonlinear guided waves can be used to assess damage levels in early thermal fatigue state by correlating them with the acoustic nonlinearity.  相似文献   

5.
鉴于常规超声检测技术对分布式材料细微损伤和接触类结构损伤的检测效果不佳,近年来非线性超声技术逐渐引起广泛关注.超声波在板壳结构中通常以兰姆波的形式进行传播,然而由于兰姆波的频散及多模特性,使得非线性兰姆波的理论和实验研究进展缓慢.本文从经典非线性理论出发,总结了源于材料固有非线性诱发的非线性兰姆波的理论和实验两个方面的研究进展,并综述了兰姆波的二次谐波发生效应在材料损伤评价方面的若干应用;从接触声非线性理论出发,讨论了目前由于接触类结构损伤诱发的非线性兰姆波的研究现状.最后展望了非线性兰姆波的未来研究重点及发展趋势.  相似文献   

6.
We study analytically and numerically primary pulse transmission in one dimensional systems of identical linearly elastic non-dispersive rods separated by identical homogeneous granular layers composed of n beads. The beads interact elastically through a strongly (essentially) nonlinear Hertzian contact law. The main challenge in studying pulse transmission in such strongly nonlinear media is to analyze the ‘basic problem’, namely, the dynamical response of a single intermediate granular layer, confined from both ends by barely touching linear elastic rods subject to impulsive excitation of the left rod. The analysis of the basic problem is carried out under two basic assumptions; namely, of sufficiently small duration of the shock excitation applied to the first layer of the system, and of sufficiently small mass of each bead in the granular interface compared to the mass of each rod. In fact, the smallness of the mass of the bead defines the small parameter in the asymptotic analysis of this problem. Both assumptions are reasonable from the point of view of practical applications. In the analysis we focus only in primary pulse propagation, by neglecting secondary pulse reflections caused by wave scattering at each granular interface and considering only the transmission of the main (primary) pulse across the interface to the neighboring elastic rod. Two types of shock excitations are considered. The first corresponds to fixed time duration (but still much smaller compared to the characteristic time of pulse propagation through the length of each rod), whereas the second type corresponds to a pulse duration that depends on the small parameter of the problem. The influence of the number of beads of the granular interface on the primary wave transmission is studied, and it is shown that at granular interfaces with a relatively low number of beads fast time scale oscillations are excited with increasing amplitudes with increasing number of beads. For a larger number of beads, primary pulse transmission is by means of solitary wave trains resulting from the dispersion of the original shock pulse; in that case fast oscillations result due to interference phenomena caused by the scattering of the main pulse at the boundary of the interface. Considering a periodic system of rods we demonstrate significant reduction of the primary pulse when transmitted through a sequence of granular interfaces. This result highlights the efficacy of applying granular interfaces for passive shock mitigation in layered elastic media.  相似文献   

7.
The DORT method is a selective detection and focusing technique originally developed to detect defects and damages which induce linear changes of the elastic moduli. It is based on the time reversal (TR) where a signal collected from an array of transducers is time reversed and then back-propagated into the medium to obtain focusing on selected targets. TR is based on the principle of spatial reciprocity. Attenuation, dispersion, multiple scattering, mode conversion, etc. do not break spatial reciprocity. The presence of defects or damage, may cause materials to show nonlinear elastic wave propagation behavior that will break spacial reciprocity. Therefore the DORT method will not allow focusing on nonlinear elastic scatterers. This paper presents a new method for the detection and identification of multiple linear and nonlinear scatterers by combining nonlinear elastic wave spectroscopy, time reversal and DORT method. In the presence of nonlinear hysteretic elastic scatterers, forcing the solid with a harmonic excitation, the time reversal operator can be obtained not only at the fundamental frequency of excitation, but also at the odd harmonics. At the fundamental harmonic, either inhomogeneities and linear damages can be individually selected but only at odd harmonics nonlinear hysteretic elastic damages exist. A procedure was developed where by decomposing the operator at the odd harmonics, it was possible to focus on nonlinear scatterers and to differentiate them from the linear inhomogeneities. A complete mathematical nonlinear DORT formulation for 1 and 2D structures is presented. To model the presence of nonlinear elastic hysteretic scatterers a Preisach–Mayergoyz (PM) material constitutive model was used. Results relative to 1 and 2 dimensional structures are reported showing the capability of the method to focus and discern selectively linear and nonlinear scatterers. Furthermore, an analysis was conducted to study the influence of the number of sources and their location on the imaging process showing that using a higher numbers of sensors does not automatically bring to a minor uncoupled behaviour between the nonlinear targets.  相似文献   

8.
The wave propagation problem in the nonlinear periodic mass-spring structure chain is analyzed using the symplectic mathematical method. The energy method is used to construct the dynamic equation, and the nonlinear dynamic equation is linearized using the small parameter perturbation method. Eigen-solutions of the symplectic matrix are used to analyze the wave propagation problem in nonlinear periodic lattices. Nonlinearity in the mass-spring chain, arising from the nonlinear spring stiffness effect, has profound effects on the overall transmission of the chain. The wave propagation characteristics are altered due to nonlinearity, and related to the incident wave intensity, which is a genuine nonlinear effect not present in the corresponding linear model. Numerical results show how the increase of nonlinearity or incident wave amplitude leads to closing of transmitting gaps. Comparison with the normal recursive approach shows effectiveness and superiority of the symplectic method for the wave propagation problem in nonlinear periodic structures.  相似文献   

9.
Shock waves in homogeneous materials in the absence of phase transitions are understood to have a one-wave structure. However, upon loading of a layered heterogeneous material system a two-wave structure is obtained––a leading shock front followed by a complex pattern that varies with time. This dual shock-wave pattern can be attributed to material architecture through which the shock wave propagates, i.e. the impedance (and geometric) mismatch present at various length scales, and nonlinearities arising from material inelasticity and failure.The objective of the present paper is to provide a better understanding of the role of material architecture in determining the structure of weak shock waves in 2-D layered material systems. Normal plate-impact experiments are conducted on 2-D layered material targets to obtain both the precursor decay and the late-time dispersion. The particle velocity at the free surface of the target plate is measured by using a multi-beam VALYN VISAR. In order to understand the effects of layer thickness and the distance of wave propagation on elastic precursor decay and late-time dispersion several different targets with various layer and target thicknesses are employed. Moreover, in order to understand the effects of material inelasticity both elastic–elastic and elastic–viscoelastic bilaminates are utilized.The results of these experiments are interpreted by using asymptotic techniques to analyze propagation of acceleration waves in 2-D layered material systems. The analysis makes use of the Laplace transform and Floquet theory for ODE’s with periodic coefficients [Asymptotic solutions for wave propagation in elastic and viscoelastic bilaminates. In: Developments in Mechanics, Proceedings of the 14th Mid-Eastern Mechanics Conference, vol. 26, no. 8, pp. 399–417]. Both wave-front and late-time solutions for step-pulse loading on layered half-space are compared with the experimental observations. The results of the study indicate that the structure of acceleration waves is strongly influenced by impedance mismatch of the layers constituting the laminates, density of interfaces, distance of wave propagation, and the material inelasticity.  相似文献   

10.
The effect of elastic nonlinearity on the propagation of Rayleigh waves in an anisotropic elastic solid is considered. A nonlinear integro-differential equation is derived for a quantity which is related to the Fourier transform of the displacement component on the surface. The variation of this quantity along the surface accounts for the slow modulation of the wave through formation and depletion of the different harmonics. Explicit results are given for harmonic generation in an initially sinusoidal wave and for parametric amplification of a weak signal by a pump wave of twice its frequency.  相似文献   

11.
A three-layer structure model is proposed for investigating the effect of a soft elastic middle layer on the propagation behavior of Love waves in piezoelectric layered systems, with "soft" implying that the bulk-shear-wave velocity of the middle layer is smaller than that of the upper sensitive layer. Dispersion equations are obtained for unelectroded and traction-free upper surfaces which, in the limit, can be reduced to those for classical Love waves. Systematic parametric studies are subsequently carried out to quantify the effects of the soft middle layer upon Love wave propagation, including its thickness, mass density, dielectric constant and elastic coefficient. It is demonstrated that whilst the thickness and elastic coefficient of the middle layer affect significantly Love wave propagation, its mass density and dielectric constant have negligible influence. On condition that both the thickness and elastic coefficient of the middle layer are vanishingly small so that it degenerates into an imperfectly bonded interface, the three-layer model is also employed to investigate the influence of imperfect interfaces on Love waves propagating in piezoelectric layer/elastic substrate systems. Upon comparing with the predictions obtained by employing the traditional shear-lag model, the present three-layer structure model is found to be more accurate as it avoids the unrealistic displacement discontinuity across imperfectly bonded interfaces assumed by the shearlag model, especially for long waves when the piezoelectric layer is relatively thin.  相似文献   

12.
In this article, we present a new constitutive model for studying ultrasonic third harmonic generation in elastic solids. The model is hyperelastic in nature with two parameters characterizing the linear elastic material response and two other parameters characterizing the nonlinear response. The limiting response of the model as the nonlinearity parameters tend to zero is shown to be the well-known St Venant–Kirchhoff model. Also, the symmetric response of the model in tension and compression and its role in third harmonic generation is shown. Numerical simulations are carried out to study third harmonic generation in materials characterized by the proposed constitutive model. Predicted third harmonic guided wave generation reveals an increasing third harmonic content with increasing nonlinearity. On the other hand, the second harmonics are independent of the nonlinearity parameters and are generated due to the geometric nonlinearity. The feasibility of determining the nonlinearity parameters from third harmonic measurements is qualitatively discussed.  相似文献   

13.
We theoretically investigated the cumulative nonlinear guided waves caused by internal resonance, using the method of multiple scales (MMS), which can construct better approximations to the solutions of perturbation problems. In this study, we consider nonlinearity only on the boundary instead of material nonlinearity or geometric nonlinearity. We showed nonlinear effects on the amplitudes of a lower mode and a higher mode depending on the propagation length. Also, we examined effects of wavenumber detuning from a phase matching condition of the two modes. If the wavenumber detuning is exactly equal to zero, the mechanical energy of the lower mode is transferred through nonlinear coupling to the energy of the higher mode, unilaterally. However, if a wavenumber detuning is not equal to zero, amplitude of the two modes change in a cyclic fashion during wave propagation. The amount of this amplitude variation and its cycle length are determined by the eigenfunctions of the two modes, the nonlinear parameter and the wavenumber detuning.  相似文献   

14.
15.
In this paper, the propagation and localization of elastic waves in randomly disordered layered three-component phononic crystals with thermal effects are studied. The transfer matrix is obtained by applying the continuity conditions between three consecutive sub-cells. Based on the transfer matrix method and Bloch theory, the expressions of the localization factor and dispersion relation are presented. The relation between the localization factors and dispersion curves is discussed. Numerical simulations are performed to investigate the influences of the incident angle on band structures of ordered phononic crystals. For the randomly disordered ones, disorders of structural thickness ratios and Lamé constants are considered. The incident angles, disorder degrees, thickness ratios, Lamé constants and temperature changes have prominent effects on wave localization phenomena in three-component systems. Furthermore, it can be observed that stopbands locate in very low-frequency regions. The localization factor is an effective way to investigate randomly disordered phononic crystals in which the band structure cannot be described.  相似文献   

16.
The paper is focused on a homogenization procedure for the analysis of wave propagation in materials with periodic microstructure. By a reformulation of the variational-asymptotic homogenization technique recently proposed by Bacigalupo and Gambarotta (2012a), a second-gradient continuum model is derived, which provides a sufficiently accurate approximation of the lowest (acoustic) branch of the dispersion curves obtained by the Floquet–Bloch theory and may be a useful tool for the wave propagation analysis in bounded domains. The multi-scale kinematics is described through micro-fluctuation functions of the displacement field, which are derived by the solution of a recurrent sequence of cell BVPs and obtained as the superposition of a static and dynamic contribution. The latters are proportional to the even powers of the phase velocity and consequently the micro-fluctuation functions also depend on the direction of propagation. Therefore, both the higher order elastic moduli and the inertial terms result to depend by the dynamic correctors. This approach is applied to the study of wave propagation in layered bi-materials with orthotropic phases, having an axis of orthotropy parallel to the direction of layering, in which case, the overall elastic and inertial constants can be determined analytically. The reliability of the proposed procedure is analysed by comparing the obtained dispersion functions with those derived by the Floquet–Bloch theory.  相似文献   

17.
In this work, the three-dimensional(3 D) propagation behaviors in the nonlinear phononic crystal and elastic wave metamaterial with initial stresses are investigated.The analytical solutions of the fundamental wave and second harmonic with the quasilongitudinal(qP) and quasi-shear(qS1 and qS2) modes are derived. Based on the transfer and stiffness matrices, band gaps with initial stresses are obtained by the Bloch theorem.The transmission coefficients are calculated to support the band gap prope...  相似文献   

18.
The influence of second-order effects on the propagation of a weak dilatational stress pulse in a heat-conducting elastic material is investigated. As a first approximation, the problem is studied using the linear theory of thermoelasticity. It is found that thermal diffusion dominates the wave motion, and a time is reached when second-order terms must be considered. The wave motion is then found to be isentropic and the shock structure is governed by Burgers's equation. Solutions to this equation are obtained and the influence of heat-conduction on pulse propagation in elastic materials is discussed, with some numerical results being presented for copper. Also, previous work in linear thermoelasticity theory is clarified and related to known results in linear and nonlinear elastodynamics.  相似文献   

19.
In this work, a 1D Pseudo-Spectral Time Domain (PSTD) algorithm has been developed for solving elastic wave equation in nonlinear heterogeneous solids using FFTs for calculation of the spatial differential operator on staggered grid. The solver uses a staggered fourth order Adams–Bashforth method, by which stress and particle velocity are updated at alternating half time steps, to integrate forward in time. To circumvent wraparound inherent to FFT-based pseudo-spectral simulation, Convolution Perfectly Matched Layer (CPML) boundary condition has been used to eliminate implementation problems linked in classical PML to the introduction in nonlinear elasticity of a time dependent bulk modulus. Different kinds of nonlinear elastic models (quadratic and cubic nonlinearity, Nazarov hysteretic nonlinearity, bi-modular nonlinearity, PM-Space nonlinearity) have been implemented. The present study will focus on the comparison of nonlinear signature (harmonics generation, shock, frequency shift and attenuation) of these different kinds of nonlinearity for rod resonance, shock wave generation. These results are expected to be useful in helping to determine the predominant nonlinear mechanism in a specific experiment.  相似文献   

20.
We analyze the propagation of nonlinear waves in homogenized periodic nonlinear hexagonal networks, considering successively 1D and 2D situations. Wave analysis is performed on the basis of the construction of the effective strain energy density of periodic hexagonal lattices in the nonlinear regime. The obtained second order gradient nonlinear continuum has two propagation modes: an evanescent subsonic mode that disappears after a certain wavenumber and a supersonic mode characterized by an increase of the frequency with the wavenumber. For a weak nonlinearity, a supersonic mode occurs and the dispersion curves lie above the linear dispersion curve (vp =vp0). For a higher nonlinearity, the wave changes from a supersonic to an evanescent subsonic mode at s=0.7 and the dispersion curves drops below the linear case and vanish for certain values of the wavenumber. An important decrease in the frequency occurs for both subsonic and supersonic modes when the lattice becomes auxetic, and the longitudinal and shear modes become very close to each other. The influence of the lattice geometrical parameters of the lattice on the dispersion relations is analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号