首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We start by a review of the chronology of mathematical results on the Dirichlet-to-Neumann map which paved the way toward the physics of transformational acoustics. We then rederive the expression for the (anisotropic) density and bulk modulus appearing in the pressure wave equation written in the transformed coordinates. A spherical acoustic cloak consisting of an alternation of homogeneous isotropic concentric layers is further proposed based on the effective medium theory. This cloak is characterized by a low reflection and good efficiency over a large bandwidth for both near and far fields, which approximates the ideal cloak with an inhomogeneous and anisotropic distribution of material parameters. The latter suffers from singular material parameters on its inner surface. This singularity depends upon the sharpness of corners, if the cloak has an irregular boundary, e.g. a polyhedron cloak becomes more and more singular when the number of vertices increases if it is star shaped. We thus analyze the acoustic response of a non-singular spherical cloak designed by blowing up a small ball instead of a point, as proposed in [Kohn, Shen, Vogelius, Weinstein, Inverse Problems 24, 015016, 2008]. The multilayered approximation of this cloak requires less extreme densities (especially for the lowest bound). Finally, we investigate another type of non-singular cloaks, known as invisibility carpets [Li and Pendry, Phys. Rev. Lett. 101, 203901, 2008], which mimic the reflection by a flat ground.  相似文献   

2.
Acoustic cloaking is an important application of acoustic metamaterials. This article proposes a novel design scheme for acoustic cloaking based on the region partitioning and multi-origin coordinate transformation. The cloaked region is partitioned into multiple narrow strips. For each strip, a local coordinate system is established with the local origin located at the strip center, and a coordinate transformation in the local coordinate system is conducted to squeeze the material along the strip length direction to form the cloaked region. To facilitate the implementation of the acoustic cloak, the multilayer effective medium is used to approximate the non-uniform anisotropic material parameters. The effectiveness of the proposed coordinate transformation method is verified by comparing the results from our method with those in the literature. Firstly, the results of a circular acoustic cloak in the literature are reproduced by using our finite element (FE) simulations for validation. Then, a comparison is made between the traditional coordinate transformation scheme and our new scheme for simulating an elliptical acoustic cloak. The results indicate that the proposed multi-origin coordinate transformation method has a better cloaking effect on the incident wave along the ellipse minor axis direction than the traditional method. This means that for the same object, an appropriate transformation scheme can be selected for different incident wave directions to achieve the optimal control effect. The validated scheme is further used to design an arch-shaped cloak composed of an upper semicircular area and a lower rectangular area, by combining the traditional single-centered coordinate transformation method for the semicircular area and the proposed multi-origin method for the rectangular area. The results show that the designed cloak can effectively control the wave propagation with significantly reduced acoustic pressure level. This work provides a flexible acoustic cloak design method applicable for arbitrary shapes and different wave incident directions, enriching the theory of acoustic cloaking based on coordinate transformation.  相似文献   

3.
利用坐标变换的方法并结合保角映射技术,论文介绍了一种利用常规的各向同性材料来设计声波器件的方法.基于此理论,设计了二维声波隐身斗篷,并进行有限元模拟,证明了该器件的有效性.另外由于设计中没有利用材料共振的性质,所以器件是宽带有效的.该方法将有助于拓宽声波功能器件的设计,并为实验验证声波器件提供了可能.  相似文献   

4.
We consider the problem of how to cloak objects from antiplane elastic waves using two alternative techniques. The first is the use of a layered metamaterial in the spirit of the work of Torrent and Sanchez-Dehesa (2008) who considered acoustic cloaks, motivated by homogenization theories, whilst the second is the use of a hyperelastic cloak in the spirit of the work of Parnell et al. (2012). We extend the hyperelastic cloaking theory to the case of a Mooney–Rivlin material since this is often considered to be a more realistic constitutive model of rubber-like media than the neo-Hookean case studied by Parnell et al. (2012), certainly at the deformations required to produce a significant cloaking effect. Although not perfect, the Mooney–Rivlin material appears to be a reasonable hyperelastic cloak. This is clearly encouraging for applications. We quantify the effectiveness of the various cloaks considered by plotting the scattering cross section as a function of frequency, noting that this would be zero for a perfect cloak.  相似文献   

5.
One popular approach to cloaking objects from electromagnetic waves at moderately long wavelengths is the scattering cancelation technique. This mechanism is based on the use of a single homogeneous thin layer to cover an object of interest in order to provide scattering suppression in a given frequency band. This approach has also been recently extended to acoustic waves. This paper provides an investigation of the physical nature of scattering cancelation by a uniform thin layer for both electromagnetic and acoustic waves in inviscid fluids. Two distinct scattering cancelation regions are obtained within the available parameter space: a non-resonant plasmonic cloaking region and an anti-resonant cloaking region, which are identified and compared in both the electromagnetic and acoustic domains. Although both types of operations allow for the suppression of the dominant scattering orders, the resulting internal fields and physical functionality of the cloaks present distinct differences between the two domains. We discuss analogies and differences between these functionalities and their implications in electromagnetic and acoustic cloaking problems, with an insight into their practical implementation.  相似文献   

6.
基于变换热动力学原理可获得具有热隐身性能的隐身结构(隐身斗篷)所需要的材料性质的空间分布。但这种材料性质的复杂分布形式以及局部热传导性能无限大等极值性质需求,使得隐身斗篷设计的实现非常困难,需要研究基于常规材料的隐身斗篷设计。本文基于常规材料的热隐身结构实现问题,提出了基于纤维增强复合材料圆环结构的实现热隐身的结构形式。首先,基于变换热动力学原理获得热隐身所需的热传导系数沿半径方向的变化规律;进而,通过设计复合材料不同位置的纤维铺设方式(含量和铺设方向)实现热隐身对材料性能的需求。选择金属银作为纤维,空气作为基体,设计出了具有热隐身性能的复合材料圆环结构纤维含量和铺设方向沿径向的分布方案。对该设计方案进行数值仿真,结果显示所设计的隐身结构具有良好的热隐身性能。由于设计方案基于常规材料,因此具有容易实现的优点。  相似文献   

7.
Transformation hydrodynamics and the corresponding metamaterials have been proposed as a means to exclude the drag force acting on an object. Here, we report a strategy to deploy the hydrodynamic cloaks in a more practical manner by assembling different-shaped cloaking parts. Our strategy is to first model a square-shaped cloak and a carpet cloak and then combine them to conceal a more complex-shaped space in the three-dimensional hydrodynamic flow. With the derivation of transformation hydrodynamics, the coordinate transformations for each hydrodynamic cloaking are demonstrated with the calculated viscosity tensors. The pressure and velocity fields of the square, triangular (carpet), and exemplary three-dimensional house-shaped cloaks are numerically simulated, thus showing a cloaking effect and reduced drag. This study suggests an efficient way of cloaking complex architectures from fluid-dynamic forces.  相似文献   

8.
五零能模式材料是一种新型人工超材料,特征为其弹性模量矩阵的6个特征值中5个为零,可用等效体积模量来描述,表现出类似流体的性质,可被应用于声学隐声斗篷的设计中。然而,根据A.N.Norris[1]提出的理论,设计五零能模式材料时,与应用变换声学方法设计一般声学人工超材料不同,要求其满足一非线性偏微分方程约束。本文利用非线性有限元的完全拉格朗日方法,推导了这一偏微分方程的弱形式,并给出了相应的非线性有限元计算列式,以及迭代求解的具体算法。最后,给出了五零能摸式材料设计的二维和三维坐标变换数值算例。  相似文献   

9.
N. H. Scott 《Wave Motion》1995,22(4):335-347
The propagation of inhomogeneous plane waves in a compressible viscous fluid is considered. The frequency and the slowness vector are both allowed to be complex. There are seen to be two types of solutions: (a) two transverse waves, which involve no density or pressure fluctuations, (b) a longitudinal wave, which involves no fluctuations in vorticity. For each type, a propagation condition is obtained giving the (complex) squared length of the slowness vector as a function of frequency. Each depends also on the viscosities. It is seen how to recover the incompressible case as the limit in which the inviscid acoustic wave speed tends to infinity. Each wave is shown to be linearly stable for real frequencies. These waves are attenuated in space and time but nevertheless it is possible to define constant weighted mean values (over a cycle of the propagating part of the wave) of the energy density, energy flux and dissipation. The energy-dissipation equation and the propagation conditions are used to derive relationships between these constant weighted means, some of which are generalizations to compressible fluids of previously known results for incompressible fluids. Explicit expressions in terms of frequency are given for the weighted means.  相似文献   

10.
《力学快报》2022,12(4):100346
Pentamode acoustic cloak is promising for underwater sound control due to its solid nature and broadband efficiency, however its realization is only limited to simple cylindrical shape. In this work, we established a set of techniques for the microstructure design of elliptical pentamode acoustic cloak based on truss lattice model, including the inverse design of unit cell and algorithms for latticed cloak assembly. The designed cloak was numerically validated by the well wave concealing performance. The work proves that more general pentamode acoustic wave devices beyond simple cylindrical geometry are theoretically feasible, and sheds light on more practical design for waterborne sound manipulation.  相似文献   

11.
We show that a unified and maximally generalized approach to spatial transformation design is possible, one that encompasses all second order waves, rays, and diffusion processes in anisotropic media. Until the final step, it is unnecessary to specify the physical process for which a specific transformation design is to be implemented. The principal approximation is the neglect of wave impedance, an attribute that plays no role in ray propagation, and is therefore irrelevant for pure ray devices; another constraint is that for waves the spatial variation in material parameters needs to be sufficiently small compared with the wavelength. The key link between our general formulation and a specific implementation is how the spatial metric relates to the speed of disturbance in a given medium, whether it is electromagnetic, acoustic, or diffusive. Notably, we show that our generalized ray theory, in allowing for anisotropic indexes (speeds), generates the same predictions as does a wave theory, and the results are closely related to those for diffusion processes.  相似文献   

12.
Nonlinear scattering of ultrasonic waves by closed cracks subject to contact acoustic nonlinearity (CAN) is determined using a 2D Finite Element (FE) coupled with an analytical approach. The FE model, which includes unilateral contact with Coulomb friction to account for contact between crack faces, provides the near-field solution for the interaction between in-plane elastic waves and a crack of different orientations. The numerical solution is then analytically extended in the far-field based on a frequency domain near-to-far field transformation technique, yielding directivity patterns for all linear and nonlinear components of the scattered waves. The proposed method is demonstrated by application to two nonlinear acoustic problems in the case of tone-burst excitations: first, the scattering of higher harmonics resulting from the interaction with a closed crack of various orientations, and second, the scattering of the longitudinal wave resulting from the nonlinear interaction between two shear waves and a closed crack. The analysis of the directivity patterns enables us to identify the characteristics of the nonlinear scattering from a closed crack, which provides essential understanding in order to optimize and apply nonlinear acoustic NDT methods.  相似文献   

13.
陈晓 《力学学报》2010,42(1):51-55
漏瑞利波存在于半无限无黏性流体和半无限固体媒质的界面处. 首先推导流固无限各向同性介质界面处漏瑞利波的特征方程和位移及应力的解析计算公式. 然后结合典型结构通过数值计算研究了漏瑞利波特性以及位移和应力在流体和固体中的分布规律. 数值计算结果表明漏瑞利波的相速度和衰减随流固密度比的增大而增大, 在流固界面上法向位移连续而切向位移不连续. 流固密度比对固体媒质中沿垂直于漏瑞利波的传播方向的位移、正应力和剪应力有比较大的影响,而对沿漏瑞利波的传播方向的正应力几乎没影响. 为利用漏瑞利波的无损检测与评价提供了理论基础.   相似文献   

14.
We study possible steady states of an infinitely long tube made of a hyperelastic membrane and conveying either an inviscid, or a viscous fluid with power-law rheology. The tube model is geometrically and physically nonlinear; the fluid model is limited to smooth changes in the tube’s radius. For the inviscid case, we analyse the tube’s stretch and flow velocity range at which standing solitary waves of both the swelling and the necking type exist. For the viscous case, we first analyse the tube’s upstream and downstream limit states that are balanced by infinitely growing upstream (and decreasing downstream) fluid pressure and axial stress caused by fluid viscosity. Then we investigate conditions that can connect these limit states by a single solution. We show that such a solution exists only for sufficiently small flow speeds and that it has a form of a kink wave; solitary waves do not exist. For the case of a semi-infinite tube (infinite either upstream or downstream), there exist both kink and solitary wave solutions. For finite-length tubes, there exist solutions of any kind, i.e. in the form of pieces of kink waves, solitary waves, and periodic waves.  相似文献   

15.
Do we observe Gerstner waves in wave tank experiments?   总被引:1,自引:0,他引:1  
We investigate theoretically the effects of viscosity and surface films on small-amplitude Gerstner waves in deep water. The analysis is performed by using a Lagrangian formulation of fluid motion. For inviscid fluids with a free surface Gerstner waves of arbitrary amplitude are exact solutions of the nonlinear Lagrangian equations. These waves have a trochoidal surface shape. They possess vorticity, but have no mean wave momentum, i.e. induce no net drift in the fluid. By expanding the wave motion after the wave steepness as a small parameter, we demonstrate how Gerstner waves to second order in wave steepness change due to viscosity, leading to a mean drift near the surface and a backward drift beneath the surface layer, so that they conserve total (zero) mean wave momentum. In addition, if the surface is covered by a freely floating inextensible film, the mean drift at the surface (the film speed) increases dramatically. A comparison with experimental data for the drift of thin plastic sheets in wave tanks is made, showing that the presence of viscosity-modified Gerstner waves cannot be ruled out on the basis of these observations.  相似文献   

16.
Steering waves in elastic solids is more demanding than steering waves in electromagnetism or acoustics. As a result, designing material distributions which are the counterpart of optical invisibility cloaks in elasticity poses a major challenge. Waves of all polarizations should be guided around an obstacle to emerge on the downstream side as though no obstacle were there. Recently, we have introduced the direct-lattice-transformation approach. This simple and explicit construction procedure led to extremely good cloaking results in the static case. Here, we transfer this approach to the dynamic case, i.e., to elastic waves or phonons. We demonstrate broadband reduction of scattering, with best suppressions exceeding a factor of five when using cubic coordinate transformations instead of linear ones. To reliably and quantitatively test these cloaks efficiency, we use an effective-medium approach.  相似文献   

17.
Nonlinear periodic gravity waves propagating at a constant velocity at the surface of a fluid of infinite depth are considered. The fluid is assumed to be inviscid and incompressible and the flow to be irrotational. It is known that there are both regular waves (for which all the crests are at the same height) and irregular waves (for which not all the crests are at the same height). We show numerically the existence of new branches of irregular waves which bifurcate from the branch of regular waves. Our results suggest there are an infinite number of such branches. In addition we found additional new branches of irregular waves which bifurcate from the previously calculated branches of irregular waves.  相似文献   

18.
The resonant flow of an incompressible, inviscid fluid with surface tension on varying bottoms was researched. The effects of different bottoms on the nonlinear surface waves were analyzed. The waterfall plots of the wave were drawn with Matlab according to the numerical simulation of the fKdV equation with the pseudo-spectral method. Prom the waterfall plots, the results are obtained as follows: for the convex bottom, the waves system can be viewed as a combination of the effects of forward-step forcing and backward step forcing, and these two wave systems respectively radiate upstream and downstream without mutual interaction. Nevertheless, the result for the concave bottom is contrary to the convex one. For some combined bottoms, the wave systems can be considered as the combination of positive forcing and negative forcing.  相似文献   

19.
Zhao  Xin  Tian  Bo  Tian  He-Yuan  Yang  Dan-Yu 《Nonlinear dynamics》2021,103(2):1785-1794

In this paper, outcomes of the study on the Bäcklund transformation, Lax pair, and interactions of nonlinear waves for a generalized (2 + 1)-dimensional nonlinear wave equation in nonlinear optics, fluid mechanics, and plasma physics are presented. Via the Hirota bilinear method, a bilinear Bäcklund transformation is obtained, based on which a Lax pair is constructed. Via the symbolic computation, mixed rogue–solitary and rogue–periodic wave solutions are derived. Interactions between the rogue waves and solitary waves, and interactions between the rogue waves and periodic waves, are studied. It is found that (1) the one rogue wave appears between the two solitary waves and then merges with the two solitary waves; (2) the interaction between the one rogue wave and one periodic wave is periodic; and (3) the periodic lump waves with the amplitudes invariant are depicted. Furthermore, effects of the noise perturbations on the obtained solutions will be investigated.

  相似文献   

20.
John B. Thoo  John K. Hunter   《Wave Motion》2003,37(4):381-405
We use an asymptotic expansion introduced by Benilov and Pelinovski to study the propagation of a weakly nonlinear hyperbolic wave pulse through a stationary random medium in one space dimension. We also study the scattering of such a wave by a background scattering wave. The leading-order solution is non-random with respect to a realization-dependent reference frame, as in the linear theory of O’Doherty and Anstey. The wave profile satisfies an inviscid Burgers equation with a nonlocal, lower-order dissipative and dispersive term that describes the effects of double scattering of waves on the pulse. We apply the asymptotic expansion to gas dynamics, nonlinear elasticity, and magnetohydrodynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号