首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The branching coefficients in the expansion of the elementary symmetric function multiplied by a symmetric Macdonald polynomial P ?? (z) are known explicitly. These formulas generalise the known r=1 case of the Pieri-type formulas for the nonsymmetric Macdonald polynomials E ?? (z). In this paper, we extend beyond the case r=1 for the nonsymmetric Macdonald polynomials, giving the full generalisation of the Pieri-type formulas for symmetric Macdonald polynomials. The decomposition also allows the evaluation of the generalised binomial coefficients $\tbinom{\eta }{\nu }_{q,t}$ associated with the nonsymmetric Macdonald polynomials.  相似文献   

2.
We present formulas of Rodrigues type giving the Macdonald polynomials for arbitrary partitionsλthrough the repeated application of creation operatorsBk,k=1, …, ℓ(λ) on the constant 1. Three expressions for the creation operators are derived one from the other. When the last of these expressions is used, the associated Rodrigues formula readily implies the integrality of the (q, t)-Kostka coefficients. The proofs given in this paper rely on the connection between affine Hecke algebras and Macdonald polynomials.  相似文献   

3.
Macdonald polynomials are orthogonal polynomials associated to root systems, and in the type A case, the symmetric Macdonald polynomials are a common generalization of Schur functions, Macdonald spherical functions, and Jack polynomials. We use the combinatorics of alcove walks to calculate products of monomials and intertwining operators of the double affine Hecke algebra. From this, we obtain a product formula for Macdonald polynomials of general Lie type.  相似文献   

4.
In recent years, plethystic calculus has emerged as a powerful technical tool for studying symmetric polynomials. In particular, some striking recent advances in the theory of Macdonald polynomials have relied heavily on plethystic computations. The main purpose of this article is to give a detailed explanation of a method for finding combinatorial interpretations of many commonly occurring plethystic expressions, which utilizes expansions in terms of quasisymmetric functions. To aid newcomers to plethysm, we also provide a self-contained exposition of the fundamental computational rules underlying plethystic calculus. Although these rules are well-known, their proofs can be difficult to extract from the literature. Our treatment emphasizes concrete calculations and the central role played by evaluation homomorphisms arising from the universal mapping property for polynomial rings.  相似文献   

5.
We give a direct proof of the combinatorial formula for interpolation Macdonald polynomials by introducing certain polynomials, which we call generic Macdonald polynomials, and which depend on d additional parameters and specialize to all Macdonald polynomials of degree d. The form of these generic polynomials is that of a Bethe eigenfunction and they imitate, on a more elementary level, the R-matrix construction of quantum immanants.  相似文献   

6.
We study the Macdonald polynomials that give eigenstates of some quantum many-body system with long-range interactions. Scalar products of the nonsymmetric Macdonald polynomials are algebraically evaluated through their Rodrigues-type formulas. We present a new proof of Macdonald's inner product identities without recourse to the shift operators; that is, we calculate square norms of the Macdonald polynomials through Weyl-symmetrization of those of the nonsymmetric Macdonald polynomials.  相似文献   

7.
We extend some results about shifted Schur functions to the general context of shifted Macdonald polynomials. We strengthen some theorems of F. Knop and S. Sahi and give two explicit formulas for these polynomials: a q-integral representation and a combinatorial formula. Our main tool is a q-integral representation for ordinary Macdonald polynomial. We also discuss duality for shifted Macdonald polynomials and Jack degeneration of these polynomials.  相似文献   

8.
We establish orthogonality relations for the Baker–Akhiezer (BA) eigenfunctions of the Macdonald difference operators. We also obtain a version of Cherednik–Macdonald–Mehta integral for these functions. As a corollary, we give a simple derivation of the norm identity and Cherednik–Macdonald–Mehta integral for Macdonald polynomials. In the appendix written by the first author, we prove a summation formula for BA functions. We also consider more general identities of Cherednik type, which we use to introduce and construct more general, twisted BA functions. This leads to a construction of new quantum integrable models of Macdonald–Ruijsenaars type.  相似文献   

9.
We present explicit Pieri formulas for Macdonald??s spherical functions (or generalized Hall-Littlewood polynomials associated with root systems) and their q-deformation the Macdonald polynomials. For the root systems of type A, our Pieri formulas recover the well-known Pieri formulas for the Hall-Littlewood and Macdonald symmetric functions due to Morris and Macdonald as special cases.  相似文献   

10.
The symmetric Macdonald polynomials may be constructed from the nonsymmetric Macdonald polynomials. This allows us to develop the theory of the symmetric Macdonald polynomials by first developing the theory of their nonsymmetric counterparts. In taking this approach we are able to obtain new results as well as simpler and more accessible derivations of a number of the known fundamental properties of both kinds of polynomials.Supported by an APA scholarship.  相似文献   

11.
Bogdan Ion 《Journal of Algebra》2008,319(8):3480-3517
We establish a connection between (degenerate) nonsymmetric Macdonald polynomials and standard bases and dual standard bases of maximal parabolic modules of affine Hecke algebras. Along the way we prove a (weak) polynomiality result for coefficients of symmetric and nonsymmetric Macdonald polynomials.  相似文献   

12.
We introduce a new basis for quasisymmetric functions, which arise from a specialization of nonsymmetric Macdonald polynomials to standard bases, also known as Demazure atoms. Our new basis is called the basis of quasisymmetric Schur functions, since the basis elements refine Schur functions in a natural way. We derive expansions for quasisymmetric Schur functions in terms of monomial and fundamental quasisymmetric functions, which give rise to quasisymmetric refinements of Kostka numbers and standard (reverse) tableaux. From here we derive a Pieri rule for quasisymmetric Schur functions that naturally refines the Pieri rule for Schur functions. After surveying combinatorial formulas for Macdonald polynomials, including an expansion of Macdonald polynomials into fundamental quasisymmetric functions, we show how some of our results can be extended to include the t parameter from Hall-Littlewood theory.  相似文献   

13.
We give an explicit Pieri formula for Macdonald polynomials attached to the root system C n (with equal multiplicities). By inversion we obtain an explicit expansion for two-row Macdonald polynomials of type C.  相似文献   

14.
Theoretical and Mathematical Physics - Schur polynomials admit a somewhat mysterious deformation to Macdonald and Kerov polynomials, which do not have a direct group theory interpretation but do...  相似文献   

15.
We show how a certain limit of the nonsymmetric Macdonald polynomials appears in the representation theory of semisimple groups over p-adic fields as matrix coefficients for the unramified principal series representations. The result is the nonsymmetric counterpart of a classical result relating the same limit of the symmetric Macdonald polynomials to zonal spherical functions on groups of p-adic type.  相似文献   

16.
In this paper we use the combinatorics of alcove walks to give uniform combinatorial formulas for Macdonald polynomials for all Lie types. These formulas resemble the formulas of Haglund, Haiman and Loehr for Macdonald polynomials of type GLn. At q=0 these formulas specialize to the formula of Schwer for the Macdonald spherical function in terms of positively folded alcove walks and at q=t=0 these formulas specialize to the formula for the Weyl character in terms of the Littelmann path model (in the positively folded gallery form of Gaussent and Littelmann).  相似文献   

17.
We prove a strong factorization property of interpolation Macdonald polynomials when q tends to 1. As a consequence, we show that Macdonald polynomials have a strong factorization property when q tends to 1, which was posed as an open question in our previous paper with Féray. Furthermore, we introduce multivariate qt-Kostka numbers and we show that they are polynomials in qt with integer coefficients by using the strong factorization property of Macdonald polynomials. We conjecture that multivariate qt-Kostka numbers are in fact polynomials in qt with nonnegative integer coefficients, which generalizes the celebrated Macdonald’s positivity conjecture.  相似文献   

18.
A recent breakthrough in the theory of (type A) Macdonald polynomials is due to Haglund, Haiman and Loehr, who exhibited a combinatorial formula for these polynomials in terms of a pair of statistics on fillings of Young diagrams. Ram and Yip gave a formula for the Macdonald polynomials of arbitrary type in terms of so-called alcove walks; these originate in the work of Gaussent-Littelmann and of the author with Postnikov on discrete counterparts to the Littelmann path model. In this paper, we relate the above developments, by explaining how the Ram-Yip formula compresses to a new formula, which is similar to the Haglund-Haiman-Loehr one but contains considerably fewer terms.  相似文献   

19.
In this paper we construct examples of commutative rings of difference operators with matrix coefficients from representation theory of quantum groups, generalizing the results of our previous paper [ES] to the q-deformed case. A generalized Baker–Akhiezer function is realized as a matrix character of a Verma module and is a common eigenfunction for a commutative ring of difference operators. In particular, we obtain the following result in Macdonald theory: at integer values of the Macdonald parameter k, there exist difference operators commuting with Macdonald operators which are not polynomials of Macdonald operators. This result generalizes an analogous result of Chalyh and Veselov for the case q=1, to arbitrary q. As a by-product, we prove a generalized Weyl character formula for Macdonald polynomials (= Conjecture 8.2 from [FV]), the duality for the -function, and the existence of shift operators.  相似文献   

20.
《Discrete Mathematics》2023,346(6):113360
We provide new approaches to prove identities for the modified Macdonald polynomials via their LLT expansions. As an application, we prove a conjecture of Haglund concerning the multi-t-Macdonald polynomials of two rows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号