首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stable matching problem is that of matching two sets of agents in such a manner that no two unmatched agents prefer each other to their actual partners under the matching. In this paper, we present a set of sufficient conditions on the preference lists of any given stable matching instance, under which the optimality of the original male optimal stable matching is still preserved.  相似文献   

2.
The stable roommates problem is that of matchingn people inton/2 disjoint pairs so that no two persons, who are not paired together, both prefer each other to their respective mates under the matching. Such a matching is called a complete stable matching. It is known that a complete stable matching may not exist. Irving proposed anO(n 2) algorithm that would find one complete stable matching if there is one, or would report that none exists. Since there may not exist any complete stable matching, it is natural to consider the problem of finding a maximum stable matching, i.e., a maximum number of disjoint pairs of persons such that these pairs are stable among themselves. In this paper, we present anO(n 2) algorithm, which is a modified version of Irving's algorithm, that finds a maximum stable matching.This research was supported by National Science Council of Republic of China under grant NSC 79-0408-E009-04.  相似文献   

3.
We describe a pair of genetic algorithms for solving two stable matching problems. Both stable matching problems we will consider involve a set of applicants for positions and a set of employers. Each applicant and each employer prepares a rank order list of a subset of the actors in the other set. The goal is to find an assignment of applicants to employers in which if applicant a is not assigned to employer b then either a prefers his assignment to b or b prefers its assignment toa . In other words, no applicant/employer pair can both improve their situations by dropping their current assignments in favor of each other. Our goal will be to enumerate the stable matchings. One of the problems we will consider is the well-known stable marriage problem, in which neither applicant nor employer preference lists are linked. In the other problem, we will allow pairs of applicants who form a couple to submit joint rank order lists of ordered pairs of employers.  相似文献   

4.
The stable matching problem is that of matching two sets of agents in such a manner that no two unmatched agents prefer each other to their mates. We establish three results on properties of these matchings and present two short proofs of a recent theorem of Dubins and Freedman.  相似文献   

5.
We study the Student-Project Allocation problem (SPA), a generalisation of the classical Hospitals/Residents problem (HR). An instance of SPA involves a set of students, projects and lecturers. Each project is offered by a unique lecturer, and both projects and lecturers have capacity constraints. Students have preferences over projects, whilst lecturers have preferences over students. We present two optimal linear-time algorithms for allocating students to projects, subject to the preference and capacity constraints. In particular, each algorithm finds a stable matching of students to projects. Here, the concept of stability generalises the stability definition in the HR context. The stable matching produced by the first algorithm is simultaneously best-possible for all students, whilst the one produced by the second algorithm is simultaneously best-possible for all lecturers. We also prove some structural results concerning the set of stable matchings in a given instance of SPA. The SPA problem model that we consider is very general and has applications to a range of different contexts besides student-project allocation.  相似文献   

6.
It is well-known that not all instances of the stable roommates problem admit a stable matching. Here we establish the first nontrivial upper bound on the limiting behavior of Pn, the probability that a random roommates instance of size n has a stable matching, namely, lim n→∞ Pn? e1/2/2 (=0.8244…). © 1994 John Wiley & Sons, Inc.  相似文献   

7.
Given a bipartite graph \(G = (A \cup B,E)\) with strict preference lists and given an edge \(e^* \in E\), we ask if there exists a popular matching in G that contains \(e^*\). We call this the popular edge problem. A matching M is popular if there is no matching \(M'\) such that the vertices that prefer \(M'\) to M outnumber those that prefer M to \(M'\). It is known that every stable matching is popular; however G may have no stable matching with the edge \(e^*\). In this paper we identify another natural subclass of popular matchings called “dominant matchings” and show that if there is a popular matching that contains the edge \(e^*\), then there is either a stable matching that contains \(e^*\) or a dominant matching that contains \(e^*\). This allows us to design a linear time algorithm for identifying the set of popular edges. When preference lists are complete, we show an \(O(n^3)\) algorithm to find a popular matching containing a given set of edges or report that none exists, where \(n = |A| + |B|\).  相似文献   

8.
We introduce an approach to certain geometric variational problems based on the use of the algorithmic unrecognizability of the n-dimensional sphere for n ≥ 5. Sometimes this approach allows one to prove the existence of infinitely many solutions of a considered variational problem. This recursion-theoretic approach is applied in this paper to a class of functionals on the space of C1.1-smooth hypersurfaces diffeomorphic to Sn in Rn+1, where n is any fixed number ≥ 5. The simplest of these functionals kv is defined by the formula kvn) = (voln))1/n/rn), where rn) denotes the radius of injectivity of the normal exponential map for Σn ? Rn+l. We prove the existence of an infinite set of distinct locally minimal values of kv on the space of C1.1-smooth topological hyperspheres in Rn+1 for any n ≥ 5. The functional kv naturally arises when one attempts to generalize knot theory in order to deal with embeddings and isotopies of “thick” circles and, more generally, “thick” spheres into Euclidean spaces. We introduce the notion of knot “with thick rope” types. The theory of knot “with thick rope” types turns out to be quite different from the classical knot theory because of the following result: There exists an infinite set of non-trivial knot “with thick rope” types in codimension one for every dimension greater than or equal to five.  相似文献   

9.
We study variants of the classical stable marriage problem in which the preferences of the men or the women, or both, are derived from a master preference list. This models real-world matching problems in which participants are ranked according to some objective criteria. The master list(s) may be strictly ordered, or may include ties, and the lists of individuals may involve ties and may include all, or just some, of the members of the opposite sex. In fact, ties are almost inevitable in the master list if the ranking is done on the basis of a scoring scheme with a relatively small range of distinct values. We show that many of the interesting variants of stable marriage that are NP-hard remain so under very severe restrictions involving the presence of master lists, but a number of special cases can be solved in polynomial time. Under this master list model, versions of the stable marriage problem that are already solvable in polynomial time typically yield to faster and/or simpler algorithms, giving rise to simple new structural characterisations of the solutions in these cases.  相似文献   

10.
Optimal popular matchings   总被引:1,自引:0,他引:1  
In this paper we consider the problem of computing an “optimal” popular matching. We assume that our input instance admits a popular matching and here we are asked to return not any popular matching but an optimal popular matching, where the definition of optimality is given as a part of the problem statement; for instance, optimality could be fairness in which case we are required to return a fair popular matching. We show an O(n2+m) algorithm for this problem, assuming that the preference lists are strict, where m is the number of edges in G and n is the number of applicants.  相似文献   

11.
In this paper, Tseng and Lee's parallel algorithm to solve the stable marriage prolem is analyzed. It is shown that the average number of parallel proposals of the algorithm is of ordern by usingn processors on a CREW PRAM, where each parallel proposal requiresO(loglog(n) time on CREW PRAM by applying the parallel selection algorithms of Valiant or Shiloach and Vishkin. Therefore, our parallel algorithm requiresO(nloglog(n)) time. The speed-up achieved is log(n)/loglog(n) since the average number of proposals required by applying McVitie and Wilson's algorithm to solve the stable marriage problem isO(nlog(n)).  相似文献   

12.
We present an algorithm that solves a two-dimensional case of the following problem which arises in robotics: Given a body B, and a region bounded by a collection of “walls”, either find a continuous motion connecting two given positions and orientations of B during which B avoids collision with the walls, or else establish that no such motion exists. The algorithm is polynomial in the number of walls (O(n5) if n is the number of walls), but for typical wall configurations can run more efficiently. It is somewhat related to a technique outlined by Reif.  相似文献   

13.
A perfect matching in a k-uniform hypergraph on n vertices, n divisible by k, is a set of n/k disjoint edges. In this paper we give a sufficient condition for the existence of a perfect matching in terms of a variant of the minimum degree. We prove that for every k≥3 and sufficiently large n, a perfect matching exists in every n-vertex k-uniform hypergraph in which each set of k−1 vertices is contained in n/2+Ω(logn) edges. Owing to a construction in [D. Kühn, D. Osthus, Matchings in hypergraphs of large minimum degree, J. Graph Theory 51 (1) (2006) 269–280], this is nearly optimal. For almost perfect and fractional perfect matchings we show that analogous thresholds are close to n/k rather than n/2.  相似文献   

14.
In a partial Latin square P a set of distinct entries, such that no two of which are in the same row or column is called a transversal. By the size of a transversal T, we mean the number of its entries. We define a duplex to be a partial Latin square of order n containing 2n entries such that exactly two entries lie in each row and column and each of n symbols occurs exactly twice. We show that determining the maximum size of a transversal in a given duplex is an NP-complete problem. This problem relates to independent sets in certain subfamilies of cubic graphs. Generalizing the concept of transversals in edge coloring of graphs we are led to introduce the concept of rainbow matching. We show that if each color appears at most twice then it is a polynomial time problem to know whether there exists a rainbow matching of size at least ⌊n/2⌋-t for each fixed t, where n is the order of the graph. As an application we show that for any fixed t, there is a polynomial time algorithm which decides whether α(G)?n-t, for any graph G on 2n vertices containing a perfect matching. At the end we mention some other applications of rainbow matching.  相似文献   

15.
John Greene 《Order》1990,6(4):351-366
If the level sets of a ranked partially ordered set are totally ordered, the greedy match between adjacent levels is defined by successively matching each vertex on one level to the first available unmatched vertex, if any, on the next level. Aigner showed that the greedy match produces symmetric chains in the Boolean algebra. We extend that result to partially ordered sets which are products of chains.It is widely thought that for Young's lattices corresponding to rectangles, the greedy match is complete. We show here that the greedy match is, in fact, complete for n×2, n×3 and n×4 rectangles but not for n×k rectangles if k5 and n is sufficiently large.  相似文献   

16.
In the setting of ZF, i.e., Zermelo–Fraenkel set theory without the Axiom of Choice (AC), we study partitions of Russell‐sets into sets each with exactly n elements (called n ‐ary partitions), for some integer n. We show that if n is odd, then a Russell‐set X has an n ‐ary partition if and only if |X | is divisible by n. Furthermore, we establish that it is relative consistent with ZF that there exists a Russell‐set X such that |X | is not divisible by any finite cardinal n > 1 (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We study a many-to-many generalisation of the well-known stable roommates problem in which each participant seeks to be matched with a number of others. We present a linear-time algorithm that determines whether a stable matching exists, and if so, returns one such matching.  相似文献   

18.
A matching game is a cooperative game (N, v) defined on a graph G = (N, E) with an edge weighting w: E? \mathbb R+{w: E\to {\mathbb R}_+}. The player set is N and the value of a coalition S í N{S \subseteq N} is defined as the maximum weight of a matching in the subgraph induced by S. First we present an O(nm + n 2 log n) algorithm that tests if the core of a matching game defined on a weighted graph with n vertices and m edges is nonempty and that computes a core member if the core is nonempty. This algorithm improves previous work based on the ellipsoid method and can also be used to compute stable solutions for instances of the stable roommates problem with payments. Second we show that the nucleolus of an n-player matching game with a nonempty core can be computed in O(n 4) time. This generalizes the corresponding result of Solymosi and Raghavan for assignment games. Third we prove that is NP-hard to determine an imputation with minimum number of blocking pairs, even for matching games with unit edge weights, whereas the problem of determining an imputation with minimum total blocking value is shown to be polynomial-time solvable for general matching games.  相似文献   

19.
A fundamental fact in two-sided matching is that if a market allows several stable outcomes, then one is optimal for all men in the sense that no man would prefer another stable outcome. We study a related phenomenon of asymmetric equilibria in a dynamic market where agents enter and search for a mate for at most n rounds before exiting again. Assuming independent preferences, we find that this game has multiple equilibria, some of which are highly asymmetric between sexes. We also investigate how the set of equilibria depends on a sex difference in the outside option of not being mated at all.  相似文献   

20.
A set S of trees of order n forces a tree T if every graph having each tree in S as a spanning tree must also have T as a spanning tree. A spanning tree forcing set for order n that forces every tree of order n. A spanning-tree forcing set S is a test set for panarboreal graphs, since a graph of order n is panarboreal if and only if it has all of the trees in S as spanning trees. For each positive integer n ≠ 1, the star belongs to every spanning tree forcing set for order n. The main results of this paper are a proof that the path belongs to every spanning-tree forcing set for each order n ∉ {1, 6, 7, 8} and a computationally tractable characterization of the trees of order n ≥ 15 forced by the path and the star. Corollaries of those results include a construction of many trees that do not belong to any minimal spanning tree forcing set for orders n ≥ 15 and a proof that the following related decision problem is NP-complete: an instance is a pair (G, T) consisting of a graph G of order n and maximum degree n - 1 with a hamiltonian path, and a tree T of order n; the problem is to determine whether T is a spanning tree of G. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号