首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 95 毫秒
1.
潘海祥  麦碧娴 《分析化学》1999,27(2):140-144
参照美国EPA525.1方法,C18-固相萃取膜萃取饮用水中的有机物,利用GC/MS法鉴定多环芳烃(PAHS),使用16种多环芳烃混合标准样绘制标准曲线,以内标法对PAHS进行定量分析。采用本方法某水厂经过深度处理后的出厂水中的7种多环芳烃的含量,PAHS的平均回收率为94.0-97.7%。检测限为0.001μg/L。  相似文献   

2.
采用固相萃取、中性硅胶-中性氧化铝复合柱对水样进行提取和净化,采用气相色谱串联质谱法测定水样中的16种多环芳烃和6种邻苯二甲酸酯.该方法对水样中的多环芳烃和邻苯二甲酸酯的检测限分别为0.10~0.26 ng/L和0.20~2.0 ng/L,加标回收率分别在88.6%~111.7%和85.3%~110.5%之间,样品重复测定6次,相对标准偏差(RSD)均小于15%.实验结果表明,该方法灵敏度高、重复性好、定量准确,可用于饮用水中多环芳烃和邻苯二甲酸酯的测定.  相似文献   

3.
用固相萃取技术富集水中多环芳烃   总被引:21,自引:0,他引:21  
贾瑞宝  孙韶华  刘德珍 《色谱》1997,15(6):524-526
系统地研究了淋洗剂强度、用量和有机改性剂的加入对固相萃取水中多环芳烃回收率的影响。研究表明,二氯甲烷和苯的洗脱效果较好,回收率为87%~102%;当淋洗剂的用量超过1.5mL时,对多环芳烃的回收率没有明显的影响;向自来水样中加入20%有机改性剂可明显改善多环芳烃的回收效果,使回收率达到89%~108%。  相似文献   

4.
建立了固相微萃取(SPME)与气相色谱-质谱(GC-MS)联用同时测定海水中16种多环芳烃的分析方法, 研究了萃取时间、盐度条件的影响. 同时用SPME的方法研究了海水中的溶解有机物(DOM)对多环芳烃萃取的影响. 计算出不同DOM浓度下多环芳烃KDOM与KOW的关系: CDOM=5 mg/L时, logKDOM = 0.7944KOW + 0.773 (R2 = 0.91). CDOM=10 mg/L时, logKDOM = 0.7905KOW + 0.668 (R2 = 0.97); CDOM=30 mg/L时, logKDOM = 0.714KOW + 1.0407(R2 = 0.91). 该法对16种多环芳烃的检出限为0.1~3.5 ng/L, 相对标准偏差(RSD, n=5)为 4%~23%. 用该法分析海洋环境中的痕量多环芳烃, 16种多环芳烃的平均回收率为88.2±20.4%, 方法快速、灵敏、简单, 适用于快速分析海水和沉积物间隙水样中的痕量多环芳烃.  相似文献   

5.
陶敬奇  王超英  李碧芳  李攻科 《色谱》2003,21(6):599-602
建立了固相微萃取(SPME)-高效液相色谱(HPLC)联用同时测定环境水样中8种多环芳烃的分析方法。优化了萃取时间、萃取温度、解吸时间、解吸溶液、解吸模式等条件。该法对8种多环芳烃的检出限为0.002-0.180 μg/L,相对标准偏差(RSD, n=6)为4.4%-12.2%。用该法分析江水中的痕量多环芳烃,除苯并[b]荧蒽外,其他7种多环芳烃的回收率为91.1%-115.8%,RSD(n=3)为3.6%-18.8%。方法快速、灵敏、简单,适用于快速分析环境水样中的痕量多环芳烃。  相似文献   

6.
固相萃取-高效液相色谱法测定水中的多环芳烃   总被引:4,自引:0,他引:4  
建立了固相萃取-一高效液相色谱法测定水中多环芳烃的方法。水样经L-18固相萃取柱吸附后用二氯甲烷洗脱,氮吹干后换甲醇溶剂。反相C18柱为色谱柱;水、甲醇为流动相进行梯度洗脱,流速为1.0mL/min;柱温为30℃;检测器为荧光检测器、紫外检测器。方法的检出限为0.00006-0.03μg/L,回收率为80%~110%,测定结果的相对标准偏差为0.1%~3.6%(n=5)。方法适合于水中16种多环芳烃的测定。  相似文献   

7.
8.
毛细管固相微萃取-液相色谱法测定水中的多环芳烃   总被引:8,自引:0,他引:8  
建立了一种新的水环境样品项处理方法。将水相中目标污染物萃取至毛细管固定相中,经微量有机溶剂解吸,直接在高效液相色谱上进样分析。该方法对蒽、荧蒽和1,2—苯并蒽3种多环芳烃的检测限分别为0.9μg/L,0.7μg/L和0.1μg/L。相对标准偏差5.1%-6.3%(n=7)。  相似文献   

9.
1  引  言多环芳烃是一类重要的致癌物质 ,环境样品中痕量的多环芳烃分析具有重要意义。其中高效液相色谱 程序波长荧光检测器检测是测定多环芳烃最常用的方法。紫外二极管矩阵检测器具有检验峰纯度、比较未知光谱与谱库光谱辅助定性的功能 ,其检测结果可靠性比程序波长荧光检测器高。但是紫外检测器灵敏度比荧光检测器低近两个数量级 ,对于清洁水样 ,多环芳烃含量很难达到紫外检测器的定量范围。为了解决清洁水样中多环芳烃的紫外二极管矩阵检测器检测 ,我们研究了色谱柱在线富集的方法 ,大大提高了多环芳烃的富集倍数 ,清洁水样中多…  相似文献   

10.
建立了同时检测蔬菜中16种多环芳烃(PAHs)和11种卤代多环芳烃(X-PAHs)污染水平的分散固相萃取-气相色谱-串联质谱(GC-MS/MS)分析方法。样品中的多环芳烃和卤代多环芳烃经正己烷提取,N-丙基乙二胺吸附剂(PSA)和十八烷基键合硅胶吸附剂(C18)分散固相萃取净化剂净化,气相色谱-串联质谱方法测定,外标法定量。16种PAHs和11种X-PAHs在50,100和200μg/kg添加浓度下的回收率为74.7%~115.1%,相对标准偏差为1.6%~15.3%,方法检出限为0.03~7.4μg/kg。  相似文献   

11.
气相色谱/质谱法测定熏肉中的多环芳烃   总被引:22,自引:0,他引:22  
李永新  张宏  毛丽莎  孙成均 《色谱》2003,21(5):476-479
建立了熏肉中多环芳烃的气相色谱/质谱(GC/MS)测定方法。样品经正己烷-丙酮(体积比为1∶1)超声波提取、氧化铝柱净化后,用GC/MS分离测定。优化了25种多环芳烃(PAHs)化合物的分离测定条件。结果 25种PAHs回收率范围为48.5%-106.5%;日内(n=7)相对标准偏差为3.75%-7.95%。方法具有灵敏度高、准确度好、能同时分离测定20余种多环芳烃化合物的优点,适合于熏肉中多环芳烃化合物的分析测定。  相似文献   

12.
色谱/质谱联用技术分析测定贻贝中的多环芳烃   总被引:5,自引:0,他引:5  
马永安  刘彤 《分析化学》1997,25(12):1382-1385
介绍了GC-MS联用技术-物质征离子选择法测定贻贝中多环芳烃的分析方法,并就定性定量离子的选择,以及方法的准确度和精密度进行了探讨。结果表明,本方法适用于海洋生物贻贝,牡蛎中PAHs的分析测定。  相似文献   

13.
建立了微波辅助萃取-气相色谱-质谱联用测定大气可吸入颗粒物中痕量多环芳烃(PAHs)的分析方法,优化了萃取时间、溶剂用量、微波辐射功率等微波萃取条件,并与超声波萃取方法进行了对照研究。结果表明:除了苊、芴外,微波萃取方法的回收率在85%-130%之间;方法的检出限在0.002-0.016μg/m^3之间。通过实际样品中PAHs的分析表明,该法快速、溶剂用量小,满足痕量分析的要求。  相似文献   

14.
固相萃取搅拌棒萃取-气相色谱分析海水中的多环芳烃   总被引:21,自引:1,他引:21  
利用固相萃取搅拌棒(SBSE)萃取海水中的多环芳烃,然后用热解吸脱附-气相色谱分析。研究了萃取时间、添加NaCl浓度对萃取效率的影响。实验结果表明,SBSE方法对16种多环芳烃的萃取回收率分别在33.5%~122.4%之间;对标准样品的检出限为2.74-13.5ng/L;方法RSD为3.8%~13.1%。用此方法测定了大连海岸海水中的多环芳烃含量。  相似文献   

15.
建立了固相萃取-液相色谱-串联质谱同时测定尿中2-羟基萘、1-羟基萘、2-羟基芴、3-羟基菲、1-羟基芘等9种多环芳烃代谢物的液相色谱-串联质谱测定方法。尿样中结合态的多环芳烃代谢物在β-葡萄糖苷酸酶-芳基硫酸酯酶缓冲液(pH 5.0)作用下,于37℃水浴中避光水解4 h后,以C18固相萃取小柱富集、净化,以甲醇洗脱,采用Waters Symmetry C18色谱柱,流动相为乙腈-0.2%氨水(72∶27,V/V)等度淋洗分离后进入质谱测定。在喷雾电压4 kV,毛细管温度300℃下,以3-羟基菲13C为内标,采用SRM模式负离子扫描方式测定,内标法定量。9种多环芳烃代谢物在尿中的线性范围为0.90~100μg/L;相关系数为0.9970~0.9990;回收率为79.0%~119.8%;相对标准偏差为4.3%~12.4%;检出限为0.04~0.90μg/L;结果表明,本方法可用于尿中9种多环芳烃代谢物的测定。  相似文献   

16.
杨蕾  王保兴  侯英  杨燕 《色谱》2007,25(5):747-752
应用搅拌棒吸附萃取(SBSE)-热脱附(TDS)-气相色谱/质谱联用(GC/MS)方法测定了滇池水系(滇池和盘龙江上、中、下游)中16种多环芳烃(PAHs)的含量。方法快速简便,无有机溶剂污染,PAHs的最低检出限为1.0~468.8 pg,理论回收率在90%以上,加标回收率为83.1%~109.4%,相对标准偏差小于10%。测定结果表明,这16种多环芳烃在滇池水样中的含量为89.16 ng/L,在盘龙江上游水样中的含量为65.41 ng/L,在盘龙江中游水样中的含量为339.22 ng/L,而在盘龙江下游水样中的含量为62.25 ng/L,说明滇池水系已经受到一定的PAHs污染,加强对滇池、盘龙江中PAHs有机污染的控制势在必行。  相似文献   

17.
建立了固相萃取/超高效液相色谱-二极管阵列检测(SPE/UPLC-PDA)联用技术测定河水中18种痕量多环芳烃(PAHs)的快速分析方法。通过优化固相萃取条件、流动相体系、色谱条件等因素,7 min内实现了18种多环芳烃的高效分离。在0.05~50 mg/L浓度范围内,18种多环芳烃的浓度与对应峰面积呈良好线性关系,相关系数为0.999 1~0.999 9,检出限为0.08~2.03 ng/L,样品加标回收率为74.5%~103.6%,相对标准偏差(RSD,n=6)为0.5%~2.3%。将该方法应用于九龙江流域龙岩段周边水样的检测,结果可靠。该方法简单环保、灵敏准确、操作快速,可显著提高河水中痕量PAHs的分析效率。  相似文献   

18.
气相色谱-串联质谱法测定牛奶中多氯联苯及多环芳烃   总被引:3,自引:0,他引:3  
建立了快速测定牛奶中20种多氯联苯(PCBs)和多环芳烃(PAHs)的气相色谱-串联质谱(GC-MS/MS)分析方法。目标化合物用正己烷提取3次,Cleanert Ba P-SPE固相萃取柱净化,GC-MS/MS测定。结果表明,20种目标物在5~200μg/L范围内呈良好线性,线性相关系数均大于0.99,方法定量下限为1.0μg/kg。在1.0,2.0,5.0μg/kg 3个加标水平下的平均回收率为67.3%~106.9%,相对标准偏差(RSD)为3.1%~13.9%。该方法简便、快速、准确,可用于牛奶中多氯联苯和多环芳烃残留的检测,为牛奶的质量控制和安全评价提供了保证。  相似文献   

19.
《Analytical letters》2012,45(13):2106-2130
Abstract

This study retrospectively analyzes the daily results of relative response factors (RRFs) of polycyclic aromatic hydrocarbons detected by gas chromatography–mass spectrometry (GC-MS). Although instrumental routine maintenance can enhance the reliability of measurement, there is no quantitative study to investigate the effects of glass liner contamination, manifold temperature drop, and column degradation on deteriorating sensitivities and stabilities of RRFs. This study demonstrates that by removing the contribution of outliners to the background level, great reductions of RRFs were achieved. Although several factors potentially undermined the analyzer's confidence on data reliability, there were no significant differences on the relative sensitivities of RRFs.  相似文献   

20.
超声提取/气相色谱-质谱法测定海洋生物中的多环芳烃   总被引:2,自引:0,他引:2  
建立了海洋生物体中16种优先控制多环芳烃的超声提取/气相色谱-质谱测定方法,对海洋鱼类、虾类、贝类和蟹类等生物样品的提取、净化和色谱质谱条件进行了优化。以正己烷-二氯甲烷(2∶1)作为溶剂进行超声提取,提取液经60%硫酸溶液和中性氧化铝-弗罗里硅土混合层析柱净化,采用气相色谱-质谱法定性和定量分析。在优化条件下,16种多环芳烃的线性范围为0.005~0.500 mg/L,相关系数(r)不低于0.998 4,检出限为0.03~0.28μg/kg。加标水平为2、20、100μg/kg时,平均加标回收率分别为55%~118%、80%~114%和79%~113%,相对标准偏差(RSDs,n=6)均小于10%。该方法快速、准确、灵敏度高、重复性好,能满足海洋生物体中持久性有机污染物分析的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号