首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The electrochemistry of 3-alkoxy- and 3-hydroxy-1-[omega-(dialkylamino)alkyl]-5-nitroindazole derivatives were characterized using cyclic voltammetry in DMSO. The nitro reduction process was studied and this was affected by the acid moieties present in these compounds. A nitro anion self-protonation process was observed. This phenomenon was studied by cyclic voltammetry in presence of increasing amount of NaOH. The reactivity of the nitro anion radical of these derivatives with glutathione was also studied by cyclic voltammetry. The oxidizing effect of glutathione is supported by the parallel decrease of the anodic peak current and increase of the cathodic peak in the cyclic voltammograms, corresponding to the wave of the nitro anion radical from uncharged species with the addition of glutathione. Nitro anion radicals obtained by electrolytic reduction of these derivatives were measured and analyzed in DMSO using electron spin resonance spectroscopy.  相似文献   

2.
Cyclic voltammetry and electron spin resonance techniques were used in the investigation of novel 3-alkoxy- and 3-hydroxy-1-[omega-(dialkylamino)alkyl]-5-nitroindazole derivatives. A self-protonation process involving the protonation of the nitro group was observed. The reactivity of the nitro-anion radical for these derivatives with glutathione, a biological relevant thiol, was also studied by cyclic voltammetry. These studies demonstrated that glutathione could react with radical species from 5-nitroindazole system. Also we demonstrated that nitro-anion radicals show three different patterns of delocalization where the indazole 1-lateral chain does not have major influence.  相似文献   

3.
Cyclic voltammetry and electron spin resonance (ESR) techniques were used in the investigation of several potential antiprotozoal thiosemicarbazones nitrofurane derivatives. A self-protonation process involving the protonation of the nitro group due to the presence of an acidic proton in the thiosemicarbazone moiety was observed in the first step of a CEE(rev) reduction mechanism of these derivatives. ESR spectra of the free radicals obtained by electrolytic reduction were characterized and analyzed. AM1 methodology was used to obtain the optimized geometries and UB3LYP calculations were performed to obtain the theoretical hyperfine coupling constants. The theoretical study exhibited an unusual assignment of the spin densities showing a free radical centered in the thiosemicarbazone moiety rather than the nitro which are in agreement with the experimental hyperfine pattern.  相似文献   

4.
Two families of 5-nitroindazole derivatives were electrochemically studied in an aprotic solvent using cyclic voltammetry (CV) technique. The produced nitro-anion radical species were characterized using electron spin resonance spectroscopy (ESR). Also, we examined the interaction between the radical species generated from nitroindazole derivatives and glutathione (GSH). Moreover, the capacity of intraparasite and intramammals-free radical production, through ESR spectroscopy, was performed.  相似文献   

5.
《Electroanalysis》2005,17(2):134-139
The electrochemical behavior of three different megazol analogues substituted at position 4 and their comparison with the parent compound megazol in protic and aprotic media by cyclic voltammetry, Tast and differential pulse polarography was studied. All the compounds were electrochemically reducible in both media with the reduction of the nitroimidazole group the main voltammetric signal. The one‐electron reduction couple due to the nitro radical anion formation was visualized only in aprotic media for all these compounds. By applying cyclic voltammetric methodology we have calculated the dimerization reaction decay constants (k2) of the corresponding nitro radical anions in aprotic media. The nitro radical anion obtained from the synthesized nitroimidazole compound having a bromine substituent in 4‐position (GC‐141) was significantly more stable than the corresponding radical formed from the compound lacking of the substituent in 4‐position, megazol.  相似文献   

6.
Musk ambrette (4-tert-butyl-3-methoxy-2,5-dinitrotoluene), a common component of perfumes, soaps, and some food flavorings, can cause cutaneous photosensitization reactions including photoallergy. These may be mediated through free radicals formed during photolysis. When musk ambrette was photolyzed under nitrogen in basic methanol, two distinct nitro anion radicals were identified by electron spin resonance. One radical was centered on a nitro group in the plane of the aromatic ring, while the other was centered on a nitro group twisted out of the plane of the ring due to steric hindrance by bulky substituents on either side of the group: the two radicals appeared to interconvert and maintain an equilibrium concentration ratio. Two closely related compounds which are also used in perfumes, but have not been reported to cause photosensitizing reactions, also produced free radicals during photolysis. Musk xylene (2,4,6-trinitro-1,3-dimethyl-5-tert-butylbenzene) generated two nitro anion radicals, both of which were centered on twisted nitro groups, while musk ketone (3,5-dinitro-2,6-dimethyl-4-tert-butylacetophenone) produced only one nitro anion radical, which is also twisted. Athough these nitro anion radicals are probably the first step in the photolysis of these nitroarornatic molecules, it seems likely that in vivo they will undergo further reduction to produce more reactive species including the corresponding nitroso and hydroxylamine derivatives. In addition, autoxidation of the nitro anion radical intermediate forms superoxide.  相似文献   

7.
《Electroanalysis》2003,15(1):19-25
The electrochemical behavior of 2‐(5‐amino‐ 1,3,4‐oxadiazolyl)‐5‐nitrofuran (NF359) and its comparison with well‐known drugs such as nifurtimox (NFX) and nitrofurazone (NFZ) in protic, mixed and aprotic media by cyclic voltammetry, tast and differential pulse polarography was studied. All the compounds were electrochemically reducible in all media being the reduction of the nitrofuran group the main voltammetric signal. The one‐electron reduction couple due to the nitro radical anion formation was visualized in mixed (for NF359 and NFZ) and aprotic media (for all compounds). By applying a cyclic voltammetric methodology we have calculated the decay constants (k2) of the corresponding nitro radical anions in mixed and aprotic media. In mixed medium data fit well with a disproportionation reaction of the nitro radical anion but in aprotic medium fit better with a dimerization reaction. Also, considering cyclic voltammetric measurements in aprotic media we have estimated the reduction potential of the RNO2/RNO2.? couple in aqueous medium, pH 7 (E17 values) finding very good correlation with E17 values obtained by pulse radiolysis. Furthermore we have calculated the equilibrium constants from the electron transfer from nitro radical anion to oxygen (kO2) finding that nitro radical anion from NF359 is thermodynamically favored to react with oxygen in respect to both NFZ and NFX.  相似文献   

8.
Three new nitrofuryl substituted 1,4-dihydropyridine derivatives were electrochemically tested in the scope of newly found compounds useful as chemotherapeutic alternative to the Chagas' disease. All the compounds were capable to produce nitro radical anions sufficiently stabilized in the time window of the cyclic voltammetric experiment. In order to quantify the stability of the nitro radical anion we have calculated the decay constant, k2. Furthermore, from the voltammetric results, some parameters of biological significance as E7(1) (indicative of in vivo nitro radical anion formation) and KO2 (thermodynamic indicator of oxygen redox cycling) have been calculated. From the comparison of E7(1), KO2 and k2 values between the studied nitrofuryl 1,4-DHP derivatives and well-known current drugs an auspicious activity for one of the studied compounds i.e. FDHP2, can be expected.  相似文献   

9.
The synthesis and redox properties of a series of free-base and metal(II) quinoxalino[2,3-b']porphyrins and their use in an investigation of the substituent effects on the degree of communication between the porphyrin and its beta,beta'-fused quinoxalino component are reported. ESR, thin-layer spectroelectrochemistry, and quantum chemical calculations of the resultant radical anions from one-electron reduction indicate that localization of the unpaired electron across both the porphyrin and the fused quinoxalino group can be controlled, the system as a whole behaving as a highly polarizable pi-expanded porphyrin radical anion. ESR studies on the radical anions of zinc(II) quinoxalino[2,3-b']porphyrin derivatives indicate that nitrogen-atom spin distribution changes as a function of chemical substitution: 27% quinoxaline character when the porphyrin ring bears a 7-nitro substituent, 34% quinoxaline character in the unsubstituted parent, and 51-61% nitroquinoxaline character when the quinoxalino unit has one or more nitro groups. Close analogies are found between the calculated and observed nitrogen-atom spin distributions, indicating that the calculations embody the key chemical effects. The calculations also indicate that the nitrogen-atom spin distributions closely parallel the important total porphyrin, quinoxaline, and nitro spin distributions, indicating that the observed quantities realistically depict the change in the nature of the delocalization of the radical anion as a function of chemical substitution. The profound effects observed indicate long-range communication of the type that is essential in molecular electronics applications.  相似文献   

10.
This paper reports the feasibility of free radicals formation from flutamide by using cyclic voltammetry. The electrochemical characteristics and the reactivity of the one-electron reduction product from flutamide in mixed media with thiol compounds and the nuclei acid bases are characterized. Results from this paper show the thermodynamic feasibility of free radical formation expressed for both the cathodic peak potential and the second-order rate constant values. The reactivity of the radical towards thiol compounds (glutathione, cysteamine, N-acetylcysteine) and the nuclei acid base, adenine, thymine and uracil were quantitatively assessed through the calculation of the respective interaction rate constants. Based on these results, the following tentative order of reactivity towards the xeno/endobiotics is as follows: cysteamine > uracil > glutathione > adenine > N-acetylcysteine > thymine. The stability of the nitro radical anion electrochemically generated from flutamide showed a linear dependence with pH.  相似文献   

11.
The electron spin resonance (ESR) spectra of free radicals obtained by electrolytic reduction of triazolopyridyl pyridyl ketones and dipyridyl ketones derivatives were measured in dimethylsulfoxide (DMSO). The hyperfine patterns indicate that the spin density delocalization is dependent of the rings presented in the molecule. The electrochemistry of these compounds was characterized using cyclic voltammetry, in DMSO as solvent. When one carbonyl is present in the molecule one step in the reduction mechanism was observed while two carbonyl are present two steps were detected. The first wave was assigned to the generation of the correspondent free radical species, and the second wave was assigned to the dianion derivatives. The phase-solubility measurements indicated an interaction between molecules selected and cyclodextrins in water. These inclusion complexes are 1:1 with betaCD, and HP-betaCD. The values of Ks showed a different kind of complexes depending on which rings are included. AM1 and DFT calculations were performed to obtain the optimized geometries, theoretical hyperfine constants, and spin distributions, respectively. The theoretical results are in complete agreement with the experimental ones.  相似文献   

12.
Limitations exist among the commonly used cyclic nitrone spin traps for biological free radical detection using electron paramagnetic resonance (EPR) spectroscopy. The design of new spin traps for biological free radical detection and identification using EPR spectroscopy has been a major challenge due to the lack of systematic and rational approaches to their design. In this work, density functional theory (DFT) calculations and stopped-flow kinetics were employed to predict the reactivity of functionalized spin traps with superoxide radical anion (O2*-). Functional groups provide versatility and can potentially improve spin-trap reactivity, adduct stability, and target specificity. The effect of functional group substitution at the C-5 position of pyrroline N-oxides on spin-trap reactivity toward O2*- was computationally rationalized at the PCM/B3LYP/6-31+G(d,p)//B3LYP/6-31G(d) and PCM/mPW1K/6-31+G(d,p) levels of theory. Calculated free energies and rate constants for the reactivity of O2*- with model nitrones were found to correlate with the experimentally obtained rate constants using stopped-flow and EPR spectroscopic methods. New insights into the nucleophilic nature of O2*- addition to nitrones as well as the role of intramolecular hydrogen bonding of O2*- in facilitating this reaction are discussed. This study shows that using an N-monoalkylsubstituted amide or an ester as attached groups on the nitrone can be ideal in molecular tethering for improved spin-trapping properties and could pave the way for improved in vivo radical detection at the site of superoxide formation.  相似文献   

13.
Several representatives of natural flavonoids and their synthetic nitro‐derivatives have been investigated by polarography and electron paramagnetic resonance (EPR) spectroscopy under electrochemical reduction in acetonitrile, dimethylformamide (DMF), dimethylsulfoxide (DMSO) or 1,2‐dimethoxyethane. All the compounds studied are reduced in the first stage by one‐electron transfer, apart from flavanone, which accepts two electrons simultaneously. However, the primary radical anions were detected by EPR spectroscopy only for 4′‐nitroflavone. It was shown that radical anions of other flavonoids quickly dimerized. The analysis of the temperature dependence of the hyperfine interaction constants and broadening of lines in EPR spectra of 4′‐nitroflavone radical anions has shown that the distribution of spin density is due to both the change of polarity of the medium and rotation of the nitrophenyl moiety. The assignment of hyperfine structure constants for the 4′‐nitroflavone radical anion was confirmed by density functional theory (DFT) calculations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Classical polarography, cyclic voltammetry, and EPR spectroscopy was used to study electrochemical reduction and oxidation of 3-nitro derivatives of 2-methyl-4-phenylquinoline, the corresponding quinolinium perchlorates, and 1,2- and 1,4-dihydroquinolines. The nitro derivatives of quinoline and 1,2-dihydroquinoline are reduced in the first step at the nitro group; the quinolinium cations are reduced at the heterocycle followed by reduction of the nitro group; and in 1,4-dihydroquinolines, the nitro group is not reduced. Electrochemical reduction processes associated with electron transfer in the heterocycle mainly display the same behavior as established for pyridine derivatives. But important differences were observed in electrochemical oxidation: the N-methyl derivative of 1,4-dihydroquinoline is oxidized significantly more easily than the corresponding N-unsubstituted derivative of 1,4-dihydroquinoline (in the 1,4-dihydropyridine series, the difference in pot! enti als is fairly small), and even more easily than the corresponding N-methyl derivative of 1,2-dihydroquinoline.  相似文献   

15.
The redox behavior has been determined in acetonitrile solutions at a mercury and platinum electrode for 2,1,3-benzo(group VI)diazoles, and 3,4-disubstituted and fused 1,2,5-thiadiazoles. The derivatives studied contained alkyl, phenyl, bromo, chloro, cyano, nitro, methylsulfonyl, and trifluoromethylsulfonyl groups. All ring systems and their derivatives are reversibly reduced initially in a one-electron step, to their respective radical anion, but the nitro and bromo derivatives are reduced preferentially at the substituent group. The potential at which the production of the radical anion occurred became more anodic as the electron withdrawing ability of the substituent and the number of substituents increased.  相似文献   

16.
Isoquinolinone derivatives bearing amino‐ or nitro‐ substituent (IQNs) have been synthesized as photoinitiators and combined with various additives (i.e., iodonium salt, N‐vinylcarbazole, amine or 2,4,6‐tris(trichloromethyl)?1,3,5‐triazine) to initiate ring‐opening cationic polymerizations (CP) or free radical polymerizations under exposure to visible LEDs (e.g., LEDs at 405 nm or 455 nm, or cold white LED) or a halogen lamp. Compared to the well‐known camphorquinone‐based systems, the novel IQNs‐based combinations employed here demonstrate higher efficiencies for the CP of epoxides. The photochemically generated reactive species (i.e., cations and radicals) from the IQNs‐based systems have been investigated by steady state photolysis, cyclic voltammetry, fluorescence, laser flash photolysis, and electron spin resonance spin trapping techniques. The structure/reactivity/photoinitiating ability relationships of IQNs‐based combinations are also discussed; the crucial role of the excited state lifetimes of the photoinitiators to ensure efficient quenching by additives is clearly underlined. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1806–1815  相似文献   

17.
The radical anions of m- and p- nitro-substituted derivatives of several classes of N-(thioacyl)-piperidines and -morpholines have been studied by ESR spectroscopy. The anion radicals were found to be centred on the nitro group, and the distribution of the unpaired electron was found to be dependent on the extent of conjugation between the thiocarbonyl group and the aromatic moiety of the molecule. The hfs constants were discussed in terms of the spin densities calculated by the McLachlan procedure.  相似文献   

18.
Naphthalimide‐phthalimide derivatives (NDPDs) have been synthesized and combined with an iodonium salt, N‐vinylcarbazole, amine or 2,4,6‐tris(trichloromethyl)‐1,3,5‐triazine to produce reactive species (i.e., radicals and cations). These generated reactive species are capable of initiating the cationic polymerization of epoxides and/or the radical polymerization of acrylates upon exposure to very soft polychromatic visible lights or blue lights. Compared with the well‐known camphorquinone based systems used as references, the novel NDPD based combinations employed here demonstrate clearly higher efficiencies for the cationic polymerization of epoxides under air as well as the radical polymerization of acrylates. Remarkably, one of the NDPDs (i.e., NDPD2) based systems is characterized by an outstanding reactivity. The structure/reactivity/efficiency relationships of the investigated NDPDs were studied by fluorescence, cyclic voltammetry, laser flash photolysis, electron spin resonance spin trapping, and steady state photolysis techniques. The key parameters for their reactivity are provided. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 665–674  相似文献   

19.
Optical and electron paramagnetic resonance spectroscopies were used to study the radical anions of several m-dinitrobenzenes and p-dinitrobenzenes with substituents on ortho positions relative to the nitro groups. 1,4-Dinitrobenzene, 1,4-dimethyl-2,5-dinitrobenzene, and 2,5-dinitrobenzene-1,4-diamine radical anions are delocalized (class III) mixed valence species, but in the dinitrodurene radical anion the nitro groups are forced out of the ring plane due to the steric hindrance, which results in localization of the charge. The radical anions m-dinitrobenzene, 2,6-dinitrotoluene, and dinitromesitylene are all localized (class II) mixed valence species, as is common for m-dinitrobenzenes, and the rate of intramolecular electron transfer reaction strongly decreases with the number of methyl substituents. The same mechanism of rotation of the nitro groups out of the ring plane due to steric hindrance caused by neighboring methyl groups is also responsible for slowing the reaction. However, 2,6-dinitroaniline radical anion and 2,6-dinitrophenoxide radical dianion are charge-delocalized because the strong electron releasing amino and oxido groups increase the conjugation between the two charge-bearing units.  相似文献   

20.
用电化学、光谱电化学和顺磁共振谱等方法对维生素B_2在粗热解石墨电极上的电化学还原机理进行了表征。结果表明维生素B_2在粗热解石墨电极上的还原为2e、2H~+过程,它先经1e、1H~+过程还原生成自由电子定域在N(5)上的自由基中间体,然后再经1e,1H~+过程还原为二氢核黄素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号