首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report here the first successful synthesis of cold antihydrogen atoms employing a cusp trap, which consists of a superconducting anti-Helmholtz coil and a stack of multiple ring electrodes. This success opens a new path to make a stringent test of the CPT symmetry via high precision microwave spectroscopy of ground-state hyperfine transitions of antihydrogen atoms.  相似文献   

2.
The motivation for production and precision spectroscopy of antihydrogen atoms is outlined. An experimental configuration is considered, concerning laser-microwave spectroscopy of a fast hydroten beam with characteristics similar to those of an antihydrogen beam emanating from an antiproton-positron overlap region in an antiproton storage ring. In particular, a possible experiment for the measurement of the ground state hyperfine structure splitting is described.  相似文献   

3.
The ASACUSA CUSP collaboration at the Antiproton Decelerator (AD) of CERN is planning to measure the ground-state hyperfine splitting of antihydrogen (H?) using an atomic spectroscopy beamline. We describe here the latest developments on the spectroscopy apparatus developed to be coupled to the H? production setup (CUSP).  相似文献   

4.
The ASACUSA collaboration has been making a path to realize high precision microwave spectroscopy of ground-state hyperfine transitions of antihydrogen atom in flight for stringent test of the CPT symmetry. For this purpose, an efficient extraction of a spin polarized antihydrogen beam is essential. In 2010, we have succeeded in synthesizing our first cold antihydrogen atoms employing a CUSP trap. The CUSP trap confines antiprotons and positrons simultaneously with its axially symmetric magnetic field to form antihydrogen atoms. It is expected that antihydrogen atoms in the low-field-seeking states are preferentially focused along the cusp magnetic field axis whereas those in the high-field-seeking states are defocused, resulting in the formation of a spin-polarized antihydrogen beam.  相似文献   

5.
In order to test CPT symmetry between antihydrogen and its counterpart hydrogen, the ASACUSA collaboration plans to perform high precision microwave spectroscopy of ground-state hyperfine splitting of antihydrogen atom in-flight. We have developed an apparatus (“cusp trap”) which consists of a superconducting anti-Helmholtz coil and multiple ring electrodes. For the preparation of slow antiprotons and positrons, Penning-Malmberg type traps were utilized. The spectrometer line was positioned downstream of the cusp trap. At the end of the beamline, an antihydrogen beam detector was located, which comprises an inorganic Bismuth Germanium Oxide (BGO) single-crystal scintillator housed in a vacuum duct and surrounding plastic scintillators. A significant fraction of antihydrogen atoms flowing out the cusp trap were detected.  相似文献   

6.
We report the successful commissioning and testing of a dedicated field-ioniser chamber for measuring principal quantum number distributions in antihydrogen as part of the ASACUSA hyperfine spectroscopy apparatus. The new chamber is combined with a beam normalisation detector that consists of plastic scintillators and a retractable passivated implanted planar silicon (PIPS) detector.  相似文献   

7.
The ASACUSA collaboration at the Antiproton Decelerator at CERN is planning to measure the hyperfine splitting of the ground state of antihydrogen using an atomic beam line. This will be a measurement of the antiproton magnetic moment, and also a test of the CPT invariance. The planned experimental method and setup, including the radiofrequency resonance cavity, are described, and results of Monte Carlo simulations are shown. These simulations predict that the antihydrogen ground-state hyperfine splitting can be determined with a relative precision of ~10???7.  相似文献   

8.
A measurement of the hyperfine structure of antihydrogen promises one of the best tests of CPT symmetry. We describe an experiment planned at the Antiproton Decelerator of CERN to measure this quantity in a beam of slow antihydrogen atoms.  相似文献   

9.
Antihydrogen is formed when antiprotons are mixed with cold positrons in a nested Penning trap. We present experimental evidence, obtained using our antihydrogen annihilation detector, that the spatial distribution of the emerging antihydrogen atoms is independent of the positron temperature and axially enhanced. This indicates that antihydrogen is formed before the antiprotons are in thermal equilibrium with the positron plasma. This result has important implications for the trapping and spectroscopy of antihydrogen.  相似文献   

10.
The ASACUSA collaboration at CERN-AD has recently submitted a proposal to measure the hyperfine splitting of the ground state of antihydrogen in an atomic beam line. The spectrometer will consist of two sextupoles for spin selection and analysis, and a microwave cavity to flip the spin of the antihydrogen atoms. Numerical simulations show that such an experiment is feasible if ~200 antihydrogen atoms per second can be produced in the ground state, and that an accuracy of better than 10–7 can be reached. This measurement will be a precise test of the CPT invariance. B. Juhász serves as one of the authors of this article on behalf of the ASACUSA collaboration.  相似文献   

11.
《Physics letters. A》2006,360(1):141-148
This work reports for the first time experimental data obtained with electrons stored in a Penning–Malmberg trap surrounded by a sextupole radial magnetic field. This trap geometry is one of the candidates for trapping antihydrogen atoms in the place where they are produced starting from cold antiprotons and positrons or positronium. The measurements show that electron plasmas with parameters matching the range used for positrons and electrons in the antihydrogen experiments (number of particles ranging from few 106 up to several 107 and densities of the order of 108–109 cm−3, radius of the order of 1–2 mm) can be transported with 100% efficiency in a trap region that simultaneously confines completely the charged particles and the neutral antihydrogen in the radial plane. Inside this trap plasma storage times of the order of several tens of seconds up to some hundreds of seconds are measured. The plasma storage times are consistent with those needed for antihydrogen production; however the increase of the plasma temperature due to the expansion is not negligible; the consequences of this effect on the antihydrogen trapping are outlined.  相似文献   

12.
Possibilities for trapping and cooling antihydrogen atoms for spectroscopy and gravitational measurements are discussed. A measurement of the gravitational force on antihydrogen seems feasible if antihydrogen can be cooled to of order 1 milli-Kelvin. Difficulties in obtaining this low energy are discussed in the hope of stimulating required experimental and theoretical studies.  相似文献   

13.
The performance of proposed antihydrogen spectroscopy or gravity experiments will crucially depend on the temperature of the initial antihydrogen sample. Measurements by ATRAP and ATHENA have shown that antihydrogen produced with the nested-trap technique is much hotter than the temperature of the surrounding trap. Therefore, novel schemes for antihydrogen recombination as well as for the pre-cooling of antiprotons are being considered. We are investigating a possible antiproton cooling technique based on the laser cooling of negative osmium ions. If demonstrated to be successful, it will allow the sympathetic cooling of antiprotons—or any negatively charged particles—to microkelvin temperatures. As a first milestone toward the laser cooling of negative ions, we have performed collinear laser spectroscopy on negative osmium and determined the transition frequency and the cross-section of the relevant bound–bound electric-dipole transition.  相似文献   

14.
Production of antihydrogen atoms by mixing antiprotons with a cold, confined, positron plasma depends critically on parameters such as the plasma density and temperature. We discuss nondestructive measurements, based on a novel, real-time analysis of excited, low-order plasma modes, that provide comprehensive characterization of the positron plasma in the ATHENA antihydrogen apparatus. The plasma length, radius, density, and total particle number are obtained. Measurement and control of plasma temperature variations, and the application to antihydrogen production experiments are discussed.  相似文献   

15.
Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report the first detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile and its relation to that of the electron plasma.  相似文献   

16.
Electron paramagnetic spectroscopy of rare‐earth ions in single crystals is an interesting tool to analyze the hyperfine structure of the ground state of the rare‐earth. This can be useful for coherent spectroscopy and quantum information applications where the hyperfine structure of the electronic levels is used. Moreover, in some cases, the electron paramagnetic resonance hyperfine structure of interacting rare‐earth ions allows us to retrieve the isotropic exchange interaction between the two interacting ions. We illustrate these points with the hyperfine structure of Yb3+ ions in vanadate crystals, the hyperfine structure of Er3+ ions in Y2SiO5, and the hyperfine structure of Yb3+ pairs in CsCdBr3.  相似文献   

17.
We study a method to induce resonant transitions between antihydrogen ( \(\bar {H}\) ) quantum states above a material surface in the gravitational field of the Earth. The method consists in applying a gradient of magnetic field which is temporally oscillating with the frequency equal to a frequency of a transition between gravitational states of antihydrogen. Corresponding resonant change in a spatial density of antihydrogen atoms can be measured as a function of the frequency of applied field. We estimate an accuracy of measuring antihydrogen gravitational states spacing and show how a value of the gravitational mass of the \(\bar {H}\) atom can be deduced from such a measurement.  相似文献   

18.
Laser-stimulated radiative transitions from states close to the ionization threshold to low-lying atomic levels are considered for protons (antiprotons) in a cold electron (positron) plasma and estimates for the resulting formation rate of hydrogen (antihydrogen) atoms in the ground state are given. The estimates apply to both laser-stimulated recombination and induced radiative stabilization of high Rydberg levels. First experiments concerning laser-stimulated recombination in merged beams of electrons and protons are discussed, which have confirmed the rate predictions for this process. In view of antihydrogen formation in a cold trapped positron plasma, the use of two successive stimulated transitions is considered for obtaining a high formation rate of ground-state atoms at relatively low radiation intensity.  相似文献   

19.
Cold antihydrogen atoms have been produced recently by mixing trapped antiprotons with cold positrons. The efficiency is remarkable: more than 10% of the antiprotons form antihydrogen. Future spectroscopy of antihydrogen has the potential to provide new extremely precise tests of the fundamental symmetry between matter and antimatter. In addition, cold antihydrogen atoms might permit the first direct experiments investigating antimatter gravity. A novel method to measure the gravitational acceleration of antimatter using ultra-cold antihydrogen atoms is proposed. PACS 04.80.Cc; 32.80.Pj; 36.10.-k  相似文献   

20.
In efforts to trap antihydrogen, a key problem is the vast disparity between the neutral trap energy scale ( $\sim\!50\,\upmu\mathrm{eV}$ ), and the energy scales associated with plasma confinement and space charge (~1 eV). In order to merge charged particle species for direct recombination, the larger energy scale must be overcome in a manner that minimizes the initial antihydrogen kinetic energy. This issue motivated the development of a novel injection technique utilizing the inherent nonlinear nature of particle oscillations in our traps. We demonstrated controllable excitation of the center-of-mass longitudinal motion of a thermal antiproton plasma using a swept-frequency autoresonant drive. When the plasma is cold, dense and highly collective in nature, we observe that the entire system behaves as a single-particle nonlinear oscillator, as predicted by a recent theory. In contrast, only a fraction of the antiprotons in a warm or tenuous plasma can be similarly excited. Antihydrogen was produced and trapped by using this technique to drive antiprotons into a positron plasma, thereby initiating atomic recombination. The nature of this injection overcomes some of the difficulties associated with matching the energies of the charged species used to produce antihydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号