首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
钨纤维增强金属玻璃复合材料弹穿甲钢靶的实验研究   总被引:1,自引:0,他引:1  
为具体研究钨纤维增强金属玻璃复合材料的力学特性及其穿甲自锐特征,开展了相应的准静态和 动态力学实验,并用火炮开展了复合材料弹体撞击钢靶的穿甲实验,同时利用金相分析对材料失效模式进行 了较系统的识别和分类,并同静动态实验数据进行比较分析,最后开展了材料自锐剪切失效的机理讨论。实 验获得了复合材料的静动态力学特性及其自锐穿甲的形貌,相关分析显示,材料的变形具有明显的应变率效 应,在复合材料弹体侵彻/穿甲过程中,弹体的破坏方式主要表现为局域化的剪切变形和断裂,并呈现出4种 自锐剪切失效模式,增强钨纤维也表现出3类失效破坏模式。  相似文献   

2.
金属玻璃及其复合材料因其优良的力学性能而具有良好的应用前景,相关研究方兴未艾.本文主要总结国内外的研究成果并结合本课题组的最新研究工作,针对块体金属玻璃基复合材料的变形行为、增韧机理和本构关系研究现状进行较为全面的综述.首先,对近几十年来在块体金属玻璃基体材料的变形行为与失效机理以及本构关系研究方面的丰硕成果进行简要回顾.其次,从实验研究和数值模拟两方面,重点对金属玻璃基复合材料的变形行为与失效机理研究成果进行介绍,总结了金属玻璃基复合材料的塑性变形、增韧机理及影响因素.然后,对金属玻璃基复合材料的本构关系研究最新进展进行评述,重点介绍了均匀化方法在该领域的应用.作为代表,较为详细地介绍了作者新近提出的一个二次均匀化的方法,并在此基础上,结合纳米孔洞作为自变量的失效判据而建立了本构模型,该模型对金属玻璃基复合材料的变形和失效行为进行了合理预测.最后,对该领域的研究现状进行简单的总结,并对未来的研究问题进行展望.  相似文献   

3.
张娟  康国政  饶威 《力学学报》2020,52(2):318-332
金属玻璃及其复合材料因其优良的力学性能而具有良好的应用前景,相关研究方兴未艾.本文主要总结国内外的研究成果并结合本课题组的最新研究工作,针对块体金属玻璃基复合材料的变形行为、增韧机理和本构关系研究现状进行较为全面的综述.首先,对近几十年来在块体金属玻璃基体材料的变形行为与失效机理以及本构关系研究方面的丰硕成果进行简要回顾.其次,从实验研究和数值模拟两方面,重点对金属玻璃基复合材料的变形行为与失效机理研究成果进行介绍,总结了金属玻璃基复合材料的塑性变形、增韧机理及影响因素.然后,对金属玻璃基复合材料的本构关系研究最新进展进行评述,重点介绍了均匀化方法在该领域的应用.作为代表,较为详细地介绍了作者新近提出的一个二次均匀化的方法,并在此基础上,结合纳米孔洞作为自变量的失效判据而建立了本构模型,该模型对金属玻璃基复合材料的变形和失效行为进行了合理预测.最后,对该领域的研究现状进行简单的总结,并对未来的研究问题进行展望.  相似文献   

4.
块体金属玻璃材料具有重要的科学和应用价值,受到国际学术界的广泛重视,针对其力学行为的有限元模拟也逐渐成为研究热点.本文综述了模拟块体金属玻璃力学行为的有限元方法研究现状,包括材料本构模型以及有限元建模等方面的发展,最后给出相关工作建议.  相似文献   

5.
本文在765~1766m/s速度范围内,对钨纤维体积分数为80%的增强锆(Zr)基块体金属玻璃复合材料长杆弹进行侵彻Q235钢靶的穿甲试验,对残余弹体进行宏、细观观测,研究弹体材料的失效破坏模式。穿甲试验表明,在大于1000m/s速度侵彻时,钨纤维非晶弹拥有头形自锐能力,表现出优秀的侵彻能力。弹材变形和破坏主要发生于弹体头部边缘层,呈局域化和尖锐化特点,而且边缘层厚度在整个高速穿甲过程中保持动态平衡。由于非晶基体作用,弹体材料易发生剪切断裂等破坏,通过流动形成质量侵蚀并导致弹体头部边缘层形成自锐。  相似文献   

6.
钨纤维复合材料穿甲弹芯侵彻时的自锐现象   总被引:3,自引:0,他引:3  
荣光  黄德武 《爆炸与冲击》2009,29(4):351-355
对钨合金穿甲弹和钨纤维/Zr合金金属玻璃基复合材料穿甲弹进行了靶场对比侵彻实验。穿甲弹侵彻过程中,钨合金弹芯头部形成蘑菇头、头部晶粒被径向压扁;钨纤维复合材料弹芯头部在侵彻过程中,发生了绝热剪切破坏,具有自锐行为,且在弹芯头部形成很薄的边缘层,仅在这层中金属玻璃基体破碎,钨纤维断裂,温度升高,质量消蚀。钨纤维复合材料穿甲弹的侵彻能力明显高于钨合金穿甲弹。  相似文献   

7.
结合穿甲实验,基于复合材料细观有限元模拟,系统开展针对钨纤维增强金属玻璃复合材料分段弹体侵彻性能的研究,并与复合材料长杆弹进行对比分析。结果表明,相对于复合材料长杆弹显著的穿甲“自锐”行为和优异的侵彻性能,复合材料分段弹体在侵彻过程中的“自锐”特性有所减弱,且弹体结构容易发生分散,进而导致弹体侵彻能力明显降低。另外,分段数目和分段间隔等因素对复合材料分段弹体的侵彻性能具有一定影响,但总体而言,不同构型分段弹体的侵彻能力均弱于复合材料长杆弹。  相似文献   

8.
论文通过LS-DYNA软件的用户自定义材料子程序(UMAT),将考虑自由体积、热以及静水应力影响的三维热力耦合本构模型编写入有限元软件中.同时考虑金属玻璃材料内部结构的不均匀性,建立了包含随机分布剪切带弱区的有限元模型.在此基础上开展了针对块体金属玻璃在准静态压缩和弯曲条件下的有限元模拟研究,具体分析材料的非均匀变形和破坏特性,并特别研究了相应的剪切带行为,包括剪切带的形核、传播以及剪切带诱导的断裂等.  相似文献   

9.
机织复合材料的本构关系与成形性研究   总被引:6,自引:1,他引:5  
朱波  余同希  陶肖明 《力学进展》2004,34(3):327-340
对机织复合材料的成形性研究文献进行综述.首先介绍了纺织复合材料的种类、力学和物理特性及其工业背景.接着,从实验、理论、计算3个方面概述了目前对平纹机织复合材料的成形性以及工业冲压技术研究的进展.对于平纹机织复合材料,剪切变形是最主要的变形形式,其本构关系具有非线性的特征.通过对材料样品纯剪切行为的观测,发现了相应的皱曲现象并引入了``锁定角'的概念.大量的实验研究了材料在工业冲压中的可能出现的变形模式及其对皱曲的影响.随后,从理论上介绍了对材料本构关系(包含了拉、压、剪)的系统性模拟,以及冲压过程中有限元数值计算方面的进展.材料的成形性还受到冲压温度、模具对材料的压力、模具与材料表面的摩擦等多种因素的影响.文章对这些问题的研究一一作了简要的介绍,其中许多研究工作不仅得到了重要的结论,还开创了相关课题研究的先河,受到了人们的普遍关注.文章的最后,在总结前人成果的基础上讨论了今后的研究方向,并对该领域的发展作了展望.   相似文献   

10.
论文考虑自由体积、热和静水应力等因素对材料变形和破坏的影响,推导了块体金属玻璃的三维热力耦合本构模型,并引入临界自由体积浓度的材料破坏准则.将相应本构模型和破坏准则写入LS-DYNA软件的用户自定义材料子程序(UMAT)中,开展了针对金属玻璃在不同变形条件下的有限元模拟研究,分析材料内部物理参量的演化特性及其所导致的材料宏观表象.分析显示,静水应力对金属玻璃的力学行为具有重要影响,导致材料的变形和破坏呈现出显著的拉压不对称特征.  相似文献   

11.
实验研究了不同预压载荷与加热速率下Zr51Ti5Ni10Cu25Al9块体非晶合金的失效温度和破坏规律, 发现预压力和温升率较低时, 随着温度的升高, 材料强度减小, 样品最后发生塑性变形; 预压力和温升率较高时样品则发生剪切断裂, 且发生剪切破坏时样品的温度高于其玻璃化转变温度.基于变温条件下的结构弛豫模型, 分析了块体非晶合金在快速加热条件下的变形过程,给出了材料发生屈服时的温度与温升率、预压力与屈服温度之间的相互关系, 并得出了实验结果的拟合关系式. 对回收样品断裂面进行分析, 发现了与恒温压缩断裂明显不同的断裂特征. 最后分析了预压载荷下快速加热过程中上述材料发生剪切破坏的临界条件.   相似文献   

12.
金属非晶发展至今已有多种体系并可实现厘米量级的块体制备,其各种性能也都有了广泛的研究。本文主要介绍金属非晶的单轴拉伸、单轴压缩、微柱压缩、薄板弯曲、拉伸-扭转等物理力学特性及关于其变形的理论分析。文章涵盖了金属非晶的以下一些力学特性:金属非晶的弹性模量和其溶剂金属的相近性―金属非晶通常具有2% 左右的弹性应变极限,对应着GPa量级的高失效强度;金属非晶单轴拉伸、压缩时的宏观塑性特征及塑性变形的典型机制;金属非晶微观上的短程与中程原子团簇结构特点及其与非晶塑性的关联;金属非晶塑性屈服与静水压力的相关性,拉扭组合时呈现的螺旋断口特征,以及Mohr-Coulomb本构模型对这些屈服特征的适用性。最后,作者也介绍了金属非晶塑性变形的微观物理模型及连续介质力学本构,以及金属非晶的断裂与疲劳特性。  相似文献   

13.
The effect of sample size on the shear deformation and compressive plasticity of different metallic glasses were investigated. The experimental results showed that the deformation and fracture behaviors of samples prepared from chemically identical Zr-, Ti-, Fe-, or Mg-based metallic glass ingots were strongly dependent on the sample size and machine stiffness, and a super-high compressive plasticity was achieved in the Zr-based metallic glasses with sample size of 1.0 mm in width. It is also found that the sample size can significantly influence the density of elastic energy dissipated in the shear band: with sample size decreasing and machine stiffness increasing, the density of the elastic energy dissipated in the shear band of metallic glasses is prominently decreased, thus the shear deformation turns to be more stable, resulting in the improvement of plasticity in ductile metallic glasses and the transition from fragmentation fracture to shear fracture in brittle metallic glasses. This finding is important for the potential applications of the present metallic glasses and for designing new metallic glasses with better mechanical properties.  相似文献   

14.
Based on a phase-field model for deformation in bulk metallic glasses (BMGs), shear band formation and crack propagation in the fiber-reinforced BMG are investigated. Ideal unbroken fibers embedded in the BMG matrix are found to significantly influence the shear banding and crack propagation in the matrix. The crack propagation affected by fibers’ length and orientation is quantitatively characterized and is described by micromechanics models for composite materials. Furthermore, fractures in some practical fiber-reinforced BMG composites such as tungsten-reinforced Zr-based BMG are simulated. The relation between the enhanced fracture toughness and the mechanical properties of fiber reinforcements is determined. Different fracture modes of BMG-matrix composites are identified from the systematic simulation studies, which are found to be consistent with experiments. The simulation results suggest that the phase-field modeling approach could be a useful tool to assist the fabrication and design of BMG composites with high fracture toughness and ductility.  相似文献   

15.
Shear localization induced brittleness is the main drawback of metallic glasses which restricts their practical applications. Previous experiments have provided insights on how to suppress shear localization by reducing the sample size of metallic glasses to the order of 100 nm. In order to reveal the size effects and associated deformation mechanisms of metallic glasses in an even finer scale, we perform large-scale atomistic simulations for the uniaxial compression and tension of metallic glass nanowires. The simulation results show that, as the diameter of metallic glass samples decreases from 45 nm to 8 nm, the tensile yield strength increases while the compressive yield strength decreases. Homogeneous flow is observed as the governing deformation mechanism in all simulated metallic glass samples, where plastic shearing tends to initiate on the sample surface and propagate into the interior. To rationalize the size dependence of yield strengths, we propose a theoretical model based on the concept of surface stress and Mohr–Coulomb criterion. The theoretical predictions agree well with the simulation results, implying the important role of surface stress on the yielding of MGs below 100 nm. Finally, a discussion about the size effects of strength in metallic glasses at different length scales is provided. Our results suggest that the shear band energy and surface stress might be the two crucial parameters in determining the critical size required for the transition from shear localization to homogeneous deformation in MGs.  相似文献   

16.
作为潜在的工程材料, 金属玻璃在材料科学和凝聚态物理等领域引起广泛的研究兴趣. 金属玻璃结构与性能的关系表明, 金属玻璃的动态非均匀性与其黏弹性和塑性紧密相关. 然而, 宏观应力松弛行为与动态弛豫之间的物理图像并不清晰. 与传统金属材料不同, 金属玻璃的变形机理非常复杂. 应力松弛是一种表征玻璃体系黏弹性和塑性变形机制的有效手段, 从而探索结构和动态非均匀性. 本研究以La30Ce30Al15Co25金属玻璃为模型体系, 在较宽的温度窗口研究了其应力松弛行为. 研究结果表明, 与传统金属玻璃不同, La30Ce30Al15Co25金属玻璃具有明显的β弛豫行为. 基于Kohlarausch-Willams-Watts (KWW)方程的分析表明, 金属玻璃应力松弛为动态不均匀过程; 热动力学分析发现La30Ce30Al15Co25金属玻璃应力松弛存在显著的双阶段行为, 即从高应力条件下应力驱动为主导的松弛行为, 向低应力下热激活为主导的松弛行为发生转变. 通过激活能谱模型分析表明, 应力松弛单元的激活并非均匀, 而是存在能量上的起伏, 金属玻璃对于外力响应是一个渐进过程, 具有动力学不均匀性. 本研究进一步构建了金属玻璃的结构和动态非均匀性之间的关联, 为研究金属玻璃的α弛豫和β弛豫提供了强有力的支撑.   相似文献   

17.
Stationary crack tip fields in bulk metallic glasses under mixed mode (I and II) loading are studied through detailed finite element simulations assuming plane strain, small scale yielding conditions. The influence of internal friction or pressure sensitivity on the plastic zones, notch deformation, stress and plastic strain fields is examined for different mode mixities. Under mixed mode loading, the notch deforms into a shape such that one part of its surface sharpens while the other part blunts. Increase in mode II component of loading dramatically enhances the normalized plastic zone size, lowers the stresses but significantly elevates the plastic strain levels near the notch tip. Higher internal friction reduces the peak tangential stress but increases the plastic strain and stretching near the blunted part of the notch. The simulated shear bands are straight and extend over a long distance ahead of the notch tip under mode II dominant loading. The possible variations of fracture toughness with mode mixity corresponding to failure by brittle micro-cracking and ductile shear banding are predicted employing two simple fracture criteria. The salient results from finite element simulations are validated by comparison with those from mixed mode (I and II) fracture experiments on a Zr-based bulk metallic glass.  相似文献   

18.
Fan  S.  Jiang  C.  Lu  H.  Li  F.  Yang  Y.  Shen  Y.  Lu  Y. 《Experimental Mechanics》2019,59(3):361-368

Small-scale metallic glasses have many applications in microelectromechanical systems (MEMS) and sensors which require good mechanical properties. Bending, tensile and compression properties of metallic glasses at micro/nano-scale have been well investigated previously. In this work, by developing a micro robotic system, we investigated the torsional behavior of Fe-Co based metallic glass microwires inside a scanning electron microscope (SEM). Benefiting from the in situ SEM imaging capability, the fracture behavior of metallic glass microwire has been uncovered clearly. Through the postmortem fractographic analysis, it can be revealed that both spiral stripes and shear bands contributed to the fracture mechanism of the microscale metallic glass. Plastic deformation of the microwires include both homogenous and inhomogeneous plastic strain, which began with the liquid-like region, then a crack formed because of shear bands and propagated along the spiral direction. Although the metallic glass microwire broke in brittle mode, the shear strain was not lower than that of conventional metal wires. Moreover, we found an inverse relationship between the plastic strain and the loading rate.

  相似文献   

19.
Shear band formation and fracture are characterized during mode II loading of a Zr-based bulk metallic glass. The measured mode II fracture toughness, KIIc=75±4 MPa√m, exceeds the reported mode I fracture toughness by ∼4 times, suggesting that normal or mean stresses play a significant role in the deformation process at the crack tip. This effect is explained in light of a mean stress modified free volume model for shear localization in metallic glasses. Thermal imaging of deformation at the mode II crack tip further reveals that shear bands initiate, arrest, and reactivate along the same path, indicating that flow in the shear band leads to permanent changes in the glass structure that retain a memory of the shear band path. The measured temperature increase within the shear band is a fraction of a degree. However, heat dissipation models indicate that the temperature could have exceeded the glass transition temperature for less than 1 ms immediately after the shear band formed. It is shown that this time scale is sufficient for mechanical relaxation slightly above the glass transition temperature.  相似文献   

20.
Shear band spacing in Zr-based bulk metallic glasses (BMGs) under dynamic loads is found to vary with position and local strain rate in the indented region. To investigate the dependence of shear band evolution characteristics on local strain rate and normal stress, a micromechanical model based on momentum diffusion is proposed. The thermo-mechanical model takes into account the normal stress dependence of yield stress, the free volume theory and the associated viscosity change within the shear band region. Temperature rise is obtained from the balance between the heat diffusion to the adjacent regions from a shear band and the heat generation due to the accumulated plastic work in a shear band. The parametric study has revealed that thermal effects play a minor role when the critical shear displacement is below 10 nm (as in nanoindentation) but become significant when the shear displacement accumulated in a shear band is of the order of hundreds of nanometers (as in uniaxial compression and in dynamic indentations). Finally, it is found that the normal stress plays a crucial role in the deformation behavior of BMGs by not only decreasing the time for shear band formation but also increasing the temperature rise significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号