首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using the integral Fourier-transform technique, we obtain a solution in integral form to the problem of excitation of elastic waves in a homogeneous isotropic solid half-space and the bordering homogeneous gas by the time-dependent forces which are arbitrarily distributed in a solid over the plane parallel to the interface of the media. Different configurations of the force sources are analyzed from the viewpoint of excitation of different types of seismoacoustic waves. Expressions for the time-averaged radiated powers of the Stoneley wave at the gas–solid interface and the Rayleigh wave at the solid–vacuum interface as well as analytical expressions for the Rayleigh wave displacements, which are valid for large distances from the source, are obtained for the harmonic dependence of forces on time. Excitation of a Rayleigh wave by the point sources oriented vertically, i.e., along the normal to the surface of elastic half-space, and horizontally, i.e., parallel to this surface, is analyzed in detail. Analytical expressions for the Rayleigh-wave radiated power are obtained. The dependences of these powers on the source orientation and depth are derived. It is shown that the Rayleigh-wave radiated power decreases with distance between the point of the force application and the boundary and turns to zero for a source depth of about 17.5% of the wavelength of the transverse wave in the case of a horizontally oriented subsurface source and a medium with identical Lamé parameters λ and μ. This power increases and reaches a relative maximum when the source depth becomes equal to about 42.4% of the wavelength of the transverse wave and then exponentially falls off as the source depth increases. This maximum is about 5.5% of the surface-source radiated power.  相似文献   

2.
Based on the strain invariant relationship and taking the high-order elastic energy into account, a nonlinear wave equation is derived, in which the excitation, linear damping, and the other nonlinear terms are regarded as the first-order correction to the linear wave equation. To solve the equation, the biggest challenge is that the secular terms exist not only in the fundamental wave equation but also in the harmonic wave equation (unlike the Duffing oscillator, where they exist only in the fundamental wave equation). In order to overcome this difficulty and to obtain a steady periodic solution by the perturbation technique, the following procedures are taken: (i) for the fundamental wave equation, the secular term is eliminated and therefore a frequency response equation is obtained; (ii) for the harmonics, the cumulative solutions are sought by the Lagrange variation parameter method. It is shown by the results obtained that the second- and higher-order harmonic waves exist in a vibrating bar, of which the amplitude increases linearly with the distance from the source when its length is much more than the wavelength; the shift of the resonant peak and the amplitudes of the harmonic waves depend closely on nonlinear coefficients; there are similarities to a certain extent among the amplitudes of the odd- (or even-) order harmonics, based on which the nonlinear coefficients can be determined by varying the strain and measuring the amplitudes of the harmonic waves in different locations.  相似文献   

3.
An improved approach for handling boundaries, interfaces, and continuous depth dependence with the elastic parabolic equation is derived and benchmarked. The approach is applied to model the propagation of Rayleigh and Stoneley waves. Depending on the choice of dependent variables, the operator in the elastic wave equation may not factor or the treatment of interfaces may be difficult. These problems are resolved by using a formulation in terms of the vertical displacement and the range derivative of the horizontal displacement. These quantities are continuous across horizontal interfaces, which permits the use of Galerkin's method to discretize in depth. This implementation extends the capability of the elastic parabolic equation to handle arbitrary depth dependence and should lead to improvements for range-dependent problems.  相似文献   

4.
A model for the propagation of nonlinear dispersive one-dimensional longitudinal strain waves in an isotropic solid with quadratic nonlinearity of elastic continuum is developed with taking into account the interaction with atomic defect clusters. The governing nonlinear dispersive-dissipative equation describing the evolution of longitudinal strain waves is derived. An approximate solution of the model equation was derived which describes asymmetrical distortion of geometry of the solitary strain wave due to the interaction between the strain field and the field of clusters. The contributions of the finiteness of the relaxation times of cluster-induced atomic defects to the linear elastic modulus and the lattice dissipation and dispersion parameters are determined. The amplitudes and width of the nonlinear waves depend on the elastic constants and on the properties of the defect subsystem (atomic defects, clusters) in the medium. The explicit expression is received for the sound velocity dependence upon the fractional cluster volume, which is in good agreement with experiment. The critical value of cluster volume fraction for the influence on the strain wave propagation is determined.  相似文献   

5.
We use the Born approximation of the perturbation method to solve the problem of scattering of a harmonic Rayleigh surface acoustic wave by a weak-contrast inhomogeneity that is small compared with the wavelength and is located in a solid half-space near its boundary. The material of the inhomogeneity differs from the material of the half-space only in its density. The Rayleigh wave incident on the inhomogeneity is excited by a monochromatic surface force source acting normally to the half-space boundary. We derive expressions for the displacement fields in the scattered spherical compressional and shear (SV- and SH-polarized) waves. Scattering of the Rayleigh wave into a Rayleigh wave is studied in detail. We find expressions for the vertical and horizontal components of the displacement vector in the scattered Rayleigh wave as well as its radiated power. It is shown that the field of the scattered surface wave is mainly formed by vertical oscillations of the inhomogeneity in the field of the incident wave. In this case, the radiated power for the scattered Rayleigh wave formed by vertical motion of the inhomogeneity in the incident-wave field depends on the depth of the inhomogeneity as the fourth power of the function describing the well-known depth dependence of the vertical displacements in the Rayleigh surface wave. Correspondingly, the dependence of the radiated power for the scattered Rayleigh wave formed by horizontal motion of the inhomogeneity depends on its location depth as the fourth power of the depth dependence of the horizontal displacements in the Rayleigh surface wave. We perform calculations of the ratio between the powers of the scattered and incident Rayleigh waves for different ratios between the velocities of the compressional and shear waves in a solid. It is shown that the radiated power for the scattered surface wave decreases sharply with increasing depth of the subsurface-inhomogeneity location. Thus, the scattering of a Rayleigh wave into a Rayleigh wave is fairly efficient only when the location depth of the inhomogeneity does not exceed about one-third of the wavelength of the shear wave in an elastic medium.  相似文献   

6.
This study concerns calculation of phased array beam fields of the nonlinear Rayleigh surface waves based on the integral solutions for a nonparaxial wave equation.Since the parabolic approximation model for describing the nonlinear Rayleigh waves has certain limitations in modeling the sound beam fields of phased arrays,a more general model equation and integral forms of quasilinear solutions are introduced.Some features of steered and focused beam Gelds radiated from a linear phased array of the second harmonic Rayleigh wave are presented.  相似文献   

7.
The results of experimental studies of the influence of a static pressure applied to a flat rough interface between two solids on its nonlinear elastic properties are presented. The studies were performed by the spectral method on the basis of an analysis of the efficiency of generation of higher acoustic harmonics, which arise upon the reflection of a longitudinal elastic wave of finite amplitude from the boundary and the passage through it. A nonmonotonic dependence of the amplitudes of acoustic harmonics on the value of the external reversible static pressure applied to the interface was revealed: pronounced amplitude maxima for the amplitudes of the second and third harmonics were observed with a decrease in the external static pressure. It was also found that the amplitudes of the second, third, and fourth acoustic harmonics increase with a decrease in the external static pressure (in comparison with their values at the same pressure values during its increase). The experimentally determined power dependence of the higher acoustic harmonics on the amplitude of the first acoustic harmonic significantly differed from the classical indices for these harmonics. The influence of the external pressure on the values of the nonlinear second- and third-order elastic parameters was analyzed. The experimental results were analyzed on the basis of nonclassical acoustic nonlinearity.  相似文献   

8.
This paper describes nonlinear shear wave experiments conducted in soft solids with transient elastography technique. The nonlinear solutions that theoretically account for plane and nonplane shear wave propagation are compared with experimental results. It is observed that the cubic nonlinearity implied in high amplitude transverse waves at f(0)=100 Hz results in the generation of odd harmonics 3f(0), 5f(0). In the case of the nonlinear interaction between two transverse waves at frequencies f(1) and f(2), the resulting harmonics are f(i)+/-2f(j)(i,j=1,2). Experimental data are compared to numerical solutions of the modified Burgers equation, allowing an estimation of the nonlinear parameter relative to shear waves. The definition of this combination of elastic moduli (up to fourth order) can be obtained using an energy development adapted to soft solid. In the more complex situation of nonplane shear waves, the quadratic nonlinearity gives rise to more usual harmonics, at sum and difference frequencies, f(i)+/-f(j). All components of the field have to be taken into account.  相似文献   

9.
A multiscale model for the two-dimensional nonlinear wave propagation in a locally microdamaged medium is presented, and numerical simulations are analyzed in view of nondestructive testing applications. The multiscale model uses a statistical distribution of hysterons and upscales their microscopic stress-strain relations to a mesoscopic level. Macroscopic observations are then predicted by finite integration techniques. The influence of a small region with hysteretic nonlinearity on the generation of harmonics is investigated, and numerical results for different amplitudes of the input signal and different analysis techniques of the response signal are presented. Second, a study is conducted on the interaction of a Rayleigh wave with a microdamaged zone with hysteretic nonlinearity at the surface of an otherwise linear body, and the influence of the microdamaged zone on the surface wave velocity and on the generation of harmonics is examined. It is found that the effect of hysteresis on the Rayleigh wave propagation can be barely seen in the surface wave velocity measurement, but shows up nicely in the wave spectrum. The potential of a nonlinearity based depth profiling technique is explored by evaluating the nonlinear responses at different frequencies for a vertically stratified medium with spatially varying hysteresis properties.  相似文献   

10.
Rigorous and approximate methods are considered for solving the problem of harmonic plane wave scattering from a plane surface arbitrarily perturbed along one dimension on a finite interval. This problem is treated using the Fredholm integral equations of the second kind and the Kirchhoff and Rayleigh approximations. The estimates of the computational efficiency of the integral equation method and the Rayleigh approximation are compared by calculating fields scattered from random rough surfaces in the resonance region (i.e., when the roughness height is comparable to or smaller than the incident wavelength) for an arbitrary incidence of a plane wave. Scattering patterns calculated using the integral equations and the Kirchhoff approximation are discussed in the case of large-scale random rough surface scattering. Particular attention is paid to scattering at near-grazing incidence.  相似文献   

11.
In the fourth order of smallness in the amplitude of a periodic capillary-gravitational wave travelling over the uniformly charged free surface of an ideal incompressible conducting liquid of a finite depth, analytical expressions for the evolution of the nonlinear wave, velocity field potential of the liquid, electrostatic field potential above the liquid, and nonlinear frequency correction that is quadratic in a small parameter are derived. It is found that the dependence of the amplitude of the nonlinear correction to the frequency on the charge density on the free liquid surface and on the thickness of the liquid layer changes qualitatively when the layer gets thinner. In thin liquid layers, the resonant wavenumber depends on the surface charge density, while in thick layers, this dependence is absent.  相似文献   

12.
The propagation of longitudinal strain waves in a solid with quadratic nonlinearity of elastic continuum was studied in the context of a model that takes into account the joint dynamics of elastic displacements in the medium and the concentration of the laser-induced point defects. The input equations of the problem are reformulated in terms of only the total displacements of the medium points. In this case, the presence of structural defects manifests itself in the emergence of a delayed response of the system to the propagation of the strain-related perturbations, which is characteristic of media with relaxation or memory. The model equations describing the nonlinear displacement wave were derived with allowance made for the values of the relaxation parameter. The influence of the generation, relaxation, and the strain-induced drift of defects and the flexoelectricity on the propagation of this wave was analyzed. It is shown that, for short relaxation times of defects, the strain can propagate in the form of both shock fronts and solitary waves (solitons). Exact solutions depending on the type of relation between the coefficients in the equation and describing both the shock-wave structures and the evolution of solitary waves are presented. In the case of longer relaxation times, shock waves do not form and the strain wave propagates only in the form of solitary waves or a train of solitons. The contributions of the finiteness of the defect-recombination rate and the flexoelectricity to linear elastic moduli and spatial dispersion are determined.  相似文献   

13.
激光激发黏弹表面波有限元数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
研究黏弹性材料中激光激发的Rayleigh波的传播特征. 考虑到黏弹性材料的黏性特征,在频域内建立黏弹性材料中激光激发Rayleigh波的有限元数值模型. 在验证有限元频域数值模型正确性的基础上,模拟脉冲激光作用在黏弹性材料上激发出Rayleigh波,进而讨论激光激发的黏弹Rayleigh波的传播特征,并比较黏弹性材料与弹性材料中激光激发的Rayleigh波差异,同时分析了材料的黏性劲度参量变化对Rayleigh波特征的影响. 关键词: 表面波 激光超声 有限元方法 黏弹性  相似文献   

14.
We develop the Riemann?CHilbert (RH) approach to scattering problems in elastic media. The approach is based on the RH method introduced in the 1990s by Fokas (A unified approach to boundary value problems, CBMS-SIAM, 2008) for studying boundary problems for linear and integrable nonlinear PDEs. A suitable Lax pair formulation of the elastodynamic equation is obtained. The integral representations derived from this Lax pair are applied to Rayleigh wave propagation in an elastic half space and quarter space. The latter problem is reduced to the analysis of a certain underdetermined RH problem. We show that the problem can be re-formulated as a well-determined vector Riemann?CHilbert problem with a shift posed on a torus.  相似文献   

15.
We develop a theory of the elasticity moduli and dissipative properties of a composite material: a phantom simulating muscle tissue anisotropy. The model used in the experiments was made of a waterlike polymer with embedded elastic filaments imitating muscle fiber. In contrast to the earlier developed phenomenological theory of the anisotropic properties of muscle tissue, here we obtain the relationship of the moduli with characteristic sizes and moduli making up the composite. We introduce the effective elasticity moduli and viscosity tensor components, which depend on stretching of the fibers. We measure the propagation velocity of shear waves and the shear viscosity of the model for regulated tension. Waves were excited by pulsed radiation pressure generated by modulated focused ultrasound. We show that with increased stretching of fibers imitating muscle contraction, an increase in both elasticity and viscosity takes place, and this effect depends on the wave propagation direction. The results of theoretical and experimental studies support our hypothesis on the protective function of stretched skeletal muscle, which protects bones and joints from trauma.  相似文献   

16.
Nonlinear asymptotic analysis of a charged drop placed in electrostatic and gravitational fields reveals a correction to the oscillation frequency and, accordingly, to the critical Rayleigh parameter. The analysis uses approximations quadratic in oscillation amplitude and linear in dimensionless equilibrium deformation of the drop. The correction is found to be proportional to the product of the oscillation amplitude and deformation. It is natural to name this correction deformational. In computations of the third order of smallness in oscillation dimensionless amplitude, a correction to the frequency and Rayleigh parameter appears, which is due to a nonlinear interaction between oscillation modes. This correction is larger than the deformational one in magnitude. Deformational corrections can be eliminated by experimenting under no-gravity conditions, but corrections due to the nonlinearity of hydrodynamic equations cannot be eliminated in this way. It is these corrections that are responsible for a critical Rayleigh parameter measurement inaccuracy.  相似文献   

17.
A nonlinear dynamic state equation of waterlike porous material that contains a system of cylindrical capillaries partially filled with viscous liquid was received. It is shown that an acoustic nonlinearity of such media contains the relaxation elastic and inelastic components due to the nonlinear dependence of the capillary and viscous pressure in fluid on the capillary diameter. For the medium, theoretical study of such nonlinear phenomena as generation of the second harmonic and a difference frequency wave, self-demodulation of high-frequency pulses as well as the change in the propagation velocity and absorption coefficient of a test wave being under an action of static loading have been carried out. The frequency dependences of medium nonlinearity parameters for these processes were determined.  相似文献   

18.
A general theory for the electrical conductivity and the thermoelectric power of monocrystalline metallic thin films at low temperatures is presented. It avoids the use of relaxation times but is based on the exact transition probabilities and is valid for arbitrary anisotropic elastic scattering mechanisms and Fermi surfaces. The boundary conditions are formulated in terms of a reflection parameter that may depend on the wave vector of the incident electrons. It is shown that the Boltzmann equation can be reduced to a finite system of Fredholm integral equations in one variable which can be solved by standard methods. The limiting cases of rather thick and very thin films are investigated in detail.  相似文献   

19.
This paper presents novel results obtained from numerical investigation of surfacesgenerated by the two-dimensional isotropic Kuramoto-Sivashinsky equation with anadditional nonlinear term and a single independent parameter. Surface roughness exhibits acertain dependence on the system size that indicates power-law shape of the surfacespectrum for small wave numbers. This leads to a conclusion that although cellular surfacepatterns of definite scale dominate in the range of short distances, there are alsoscale-free long-range height variations present in large systems. The dependence of thespectral exponent on the equation parameter gives new insight into the influence of theadditional term in the equation on the scaling behavior for large systems.  相似文献   

20.
In order to understand the viscoelasticity of material, this research has been conducted to study the propagation characteristics of viscoelastic Rayleigh wave theoretically. A model is presented for the pulsed laser generation of ultrasound on viscoelastic medium surface. Referred to the Kelvin model, the frequency equation and the normal displacement of viscoelastic Rayleigh wave were derived, the influence of the viscoelastic modulus on dispersion and attenuation was discussed. From the theoretical calculation, it is shown that the effect of viscoelasticity on the attenuation of Rayleigh wave is more than that on its dispersion. In the case of a weak viscosity, the attenuation of viscoelastic Rayleigh wave is directly proportional to viscosity modulus; the effect of shear viscosity on the attenuation is much more than that of bulk viscosity. The transient response of viscoelastic Rayleigh wave was also simulated using Laplace and Hankel inversion transform, which are showed in good agreement with the theoretic predictions. The model provides a useful tool for the determination of viscoelastic parameters of medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号