首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
High polymer/surfactant weight ratios (up to about 15:1) of polystyrene microlatexes have been successfully produced by microemulsion polymerization using a small amount of polymerizable surfactant, ω-methoxypoly(ethylene oxide)40 undecyl α-methacrylate macromonomer (PEO-R-MA-40), and cetyltrimethylammonium bromide (CTAB). After generating “seeding particles” in a ternary microemulsion containing only 0.2 wt% CTAB and 0.1 wt% styrene, the additional styrene containing less than 1 wt% PEO-R-MA-40 was added dropwise to the polymerized microemulsion for a period of about 4 h at room temperature. PEO-R-MA-40 copolymerized readily with styrene. The stable microlatexes were bluish-transparent at a lower polymer content and became bluish-opaque at a higher polymer content. Nearly monodisperse latex particles with diameters ranging from 50 to 80 nm and their molar masses ranging from 0.6 to 1.6 × 106 g/mol could be obtained by varying the polymerization conditions. The dependence of the number of particles per milliliter of microlatex, the latex particle size and the copolymer molar mass on the polymerization time is discussed in conjunction with the effect of the macromonomer concentration. Received: 25 October/2000 Accepted: 2 February 2001  相似文献   

2.
 The emulsifier-free emulsion copolymerization of styrene and tetrahydrofurfuryl methacrylate (TMA) in aqueous phase is described. Monodisperse latex particles with diameters from about 280 to 620 nm are obtained consisting of a hydro-phobic polystyrene core and a hydrophilic poly-TMA shell. The influence of a variation of TMA, styrene and initiator (potassium persulfate) concentration in the original emulsion on particle size, molecular weight and composition of the copolymer is described. The concentration of TMA and initiator affects the number of primary particles but not the size of the final particles, whereas the styrene concentration strongly influences the particle diameter, a large size being favored by a high styrene concentration. The molecular weights of the polymers are between 6.2×104 and 7.0×105 g/mole. Size exclusion chromatography of polymer solutions in tetra-hydrofuran shows that high molecular weights are especially found in large particles, which are preferentially formed in emulsions with a high concentration of styrene. 1H-NMR spectroscopy of the polymer shows that only about 50% of the initial TMA concentration are polymerized in the particles. Thus the copolymers prepared at increasing styrene concentration and constant initiator concentration of the emulsion show an increasing polystyrene content and are formed in particles of increasing size. Received: 4 June 1997 Accepted: 19 August 1997  相似文献   

3.
<正>In this study,P(St-MAA) seed latex particles were first prepared via soap-free emulsion polymerization of styrene(St) and methacrylic acid(MAA),then the seed particles were allowed to swell with St at room temperature,and the P(St-MAA)/P(StNaSS) core/shell latex particles were then synthesized via seeded emulsion copolymerization of St and sodium styrene sulphonate (NaSS) using AIBN as initiator in the presence of N,N'-methylenebisacrylamide(BAA,water-soluble crosslinker).Results showed that the polymerization could be carried out smoothly when the ratio of BAA to total monomers was less than 3 mol%,the narrow dispersed P(St-MAA) seed particles with the diameter of 150 nm and the P(St-MAA)/P(St-NaSS) core/shell latexes with the particle size of about 200 nm were synthesized.When the 25/75 mole ratio of NaSS/(St + MAA) and 2 mol%of BAA were used in the seeded emulsion polymerization,the resulted P(St-MAA)/P(St-NaSS) latex product showed a low weight loss after water extraction,and the NaSS unit content in the whole particle and in the shell reached 11.7 mol%and 34.6 mol%,respectively.  相似文献   

4.
In this research, submicron and carboxyl‐functionalized magnetic latex particles were elaborated by using seeded emulsion polymerization technique in presence of oil‐in‐water (o/w) magnetic emulsion as seed. The polymerization conditions were optimized in order to get well‐defined latex particles with magnetic core and polymer shell bearing carboxylic (–COOH) functionality. Starting from (o/w) magnetic emulsion as seed, synthesis process was performed by copolymerization of styrene (St) monomer with the cross‐linker divinylbenzene (DVB) in presence of 4,4′‐azobis(4‐cyanopentanoic acid) (ACPA) as a carboxyl‐bearing initiator. The prepared magnetic latex particles were first characterized in terms of particle size, chemical composition, morphology, magnetic properties, magnetic content, and colloidal stability using various techniques, e.g. particle size analyzer using dynamic light scattering (DLS) technique, Fourier transform infrared, transmission electron microscopy, vibrating sample magnetometer, thermogravimetric analysis, and zeta potential measurements as a function of pH of the dispersion media, respectively. The prepared magnetic latex particles were then used as second seed for further functionalization with methacrylic acid (MAA) in order to enhance carboxylic groups on the magnetic particle's surface. The results showed that final magnetic latex particles possessed spherical morphology with core‐shell structure and enriched carboxylic acid functionality. More importantly, they exhibited superparamagnetism with high magnetic content (58.42 wt%) and high colloidal stability, which considered as the main requirements for their application in the biomedical diagnostic domains. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
阚成友 《高分子科学》2014,32(5):519-523
Crosslinked x-P(St-MAA) seed latex was first prepared via soap-free emulsion copolymerization of styrene (St) and methyl methacrylic acid (MAA) with divinyl benzene as crosslinker and ammonium persulfate as initiator, and x-P(St-MAA)/x-P(St-NaSS) core/shell latex particles were then synthesized through a novel seeded emulsion copolymerization of St and sodium styrene sulphonate (NaSS) in the presence of water-soluble crosslinker N,N′-methylene bisacrylamide (BAA) using oil-soluble 2,2-azobis isobutyronitrile as initiator. TEM observation indicated that narrow dispersed core/shell latex particles were obtained, and element analysis showed that NaSS unit content in the whole particle and in the shell reached 22.8 wt% and 51.2 wt%, respectively.  相似文献   

6.
This article describes the preparation of micron-size monodisperse polymer particles by dispersion copolymerization of styrene with a poly(2-oxazoline) macromonomer in an aqueous ethanol solution. The macromonomer acted as a comonomer as well as a stabilizer. The diameter of the particles increased as the concentration of the macromonomer decreased. The higher the molecular weight of the macromonomer, the smaller the particle size. The copolymerization in the solvent containing higher water content gave smaller polymer particles. Under the condition giving the monodisperse particles, the particles volume increased linearly with the yield of the particles. From ESCA analysis of the particle surface, poly(2-oxazoline) chains were enriched on the surface. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
Novel fluorinated polyurethane hybrid latexes in the size range of 40–50 nm, fluoroalkyl acrylate as fluorinated monomers, with various fluorine content (F% = 9∼26 wt%) were successfully prepared via emulsion polymerization process without traditional emulsifier. The waterborne polyurethane, which was synthesized by using isophronediisocyanate, dimethylol propionic acid, polyethylene glycols, etc., served not only as copolymerizable macromonomer but also as polymeric high molecular weight emulsifier. The structures of polyurethane macromonomer and fluorinated polyurethane were characterized by Fourier transform infrared and H1-NMR. Particle size, zeta potential, micromorphology of the latex par.ticles, and surface properties were investigated by dynamic light scattering, potential particle size analyzer, transmission electron microscopy, and contact angle measurement, respectively. Results illustrated that the advantage of this process is that the size of fluorinated polyurethane hybrid particle is less sensitive to the composition. Furthermore, it was showed that fluorinated polyurethane latex particles had core-shell structures, especially when the content of fluorine was 26.08 wt%. Moreover, there was an obvious migration of fluorinated groups to the surface during the formation of fluorinated polymer films, although fluorinated groups were covered by polyurethane in latex particles.  相似文献   

8.
Emulsifier-free emulsion copolymerization of styrene (St) and acrylamide (AAm) has been investigated in the presence of an amphoteric water-soluble initiator, 2,2′-azobis[N-(2-carboxyethyl)-2-2-methylpropionamidine]hydrate (VA057). The kinetics of polymerization and the colloidal properties of the resulting latices were studied and compared with the cases using ionic initiators. When adopting the amphoteric initiator at pHs lower than 10, stable amphoteric poly (St/AAm) latices, evidenced by the electrophoretic mobility, were prepared directly. Meanwhile, almost the same conversion versus time curves appeared and there were no apparent differences in the final particle sizes for those polymerizations, whereas in the polymerization at pH 10, a much lower rate of copolymerization and a larger size of particles were observed. The surface charge density and the growth rate of latex particles produced with VA057 at pH<10 were comparable to those of the particles with a cationic initiator, 2,2′-azobis(2-amidinopropane)dihydrochloride, but were apparently lower than those with an anionic initiator, potassium persulfate, when the polymerizations were carried out under corresponding conditions. The number of initiator fragments incorporated onto the particle surfaces was independent of polymerization pH, except for pH 10. The abnormal performance of VA057 at pH 10 was attributed to its degradation due to hydrolysis. Received: 14 December 1999 Accepted: 22 February 2000  相似文献   

9.
Monosized poly(styrene/N-[3-(dimethylamino)propyl]methacrylamide/poly(ethylene glycol) ethyl ether methacrylate) [poly(St/PEG-EEM/DMAPM)] cationic nanoparticles were synthesized by emulsifier-free emulsion polymerization conducted in the presence of a cationic initiator, 2,2-azobis(2-methylpropionamidine) dihydrochloride (APDH or V-50). Particle sizes and surface charge densities were measured with a Zeta Sizer. The structure of the terpolymers was determined by Fourier transform IR and 1H NMR spectroscopies. The amounts of the main monomer (St), cationic comonomer (DMAPM), stabilizer (PEG-EEM), and initiator (APDH), and the water-to-monomer phase ratio were all effective on both the average size and the surface charge of the nanoparicles. The average particle size was in the range 75–400 nm depending on the recipe applied; it decreased on increasing the amount of DMAP or PEG-EEM or the water-to-monomer phase ratio in the feed, while it increased with increasing St or APDH content. These nanoparticles were quite monodisperse with a polydispersity index of 1.008–1.14.  相似文献   

10.
This work reports the morphology of two-phase latex particles prepared by semi-continuous seed emulsion polymerization of styrene in the presence of polar poly(methyl methacrylate), PMMA, seed particles, using different conditions of non-polar styrene feed rate, rate of initiation, seed particle concentration and temperature of polymerization.The expected latex particle morphology at thermodynamic equilibrium is an inverted core-shell structure where the non-polar polystyrene would form the core. However, depending on the set of process conditions used the morphology of the resulting two-phase particles varied from that of a pure core-shell structure, over intermediate structures in which a shell of PS surrounded a PMMA core containing an increasing number of PS phase domains, to a structure in which the entire PS phase was present as discrete PS phase domain, more or less evenly distributed in a matrix of PMMA.By the use of a caloirimetric reactor system the monomer concentration in the particles during the different polymerization experiments could be calculated by comparing the integral of the polymerization rate curve with the integral of the monomer feed rate. A comparison between particle morphology and the calculated concentration of plasticizing monomer in the polymerizing particles strongly suggested that the diffusivity of the entering oligo radicals determined by the difference between polymerization temperature and the glass transition temperature of the monomer-swollen core polymer is a key factor determining the morphology of two-phase particles prepared by semi-continuous seed emulsion polymerization.Two-phase particles with a true core-shell structure were obtained in experiments where the estimated glass transition temperature of the PMMA phase was only a few degrees below the polymerization temperature. The results show that such particles can be obtained under conditions of high as well as low styrene feed rates, provided that the rate of initiation is properly adjusted.  相似文献   

11.
孔祥正 《高分子科学》2012,30(2):278-286
Cationic latexes were prepared through emulsion copolymerization of styrene(St) and butyl acrylate(BA) with a cationic surfactant,cetyl trimethyl ammonium bromide(CTAB).Latex properties,including particle size,size distribution,ζpotential,surface tension and monomer conversion,were determined for latexes prepared with different CTAB amounts. Evolution of these properties during emulsion polymerization was followed in order to understand the mechanism of the particles formation.Results showed that both particle size andζpotential were function of polymerization time and latex solids.Parallel emulsion polymerizations with cationic,anionic charged initiator and charge-free initiators were also carried out,the latex properties were determined at different polymerization time.All these results were attentively interpreted based on the mechanisms of emulsion polymerization,surfactant adsorption and latex particle stabilization.  相似文献   

12.
An emulsion polymerization of styrene in the presence of an amphoteric emulsifier of the betaine type; N,N-dimethyl-n-laurylbetaine (LNB), has been studied at various pH values. The relationships between the physicochemical properties of LNB aqueous solutions, the emulsion polymerization process and the characteristics of the synthesized latex particles were studied under various pH conditions. The polymerization rate and the particle number concentration decreased with increasing pH of LNB aqueous solution and changed in shape at both ca. pH 4 and pH 8–10. The properties of LNB aqueous solution also changed with the pH and changed in shape at the same pH as that of the emulsion polymerization. These pH values were in good agreement with the pH at which the LNB molecule changed its ionic form. The number of synthesized latex particles was proportional to the number of LNB micelles in the solution, below pH 10. The particle size of the synthesized latex particles and the molecular weight of the latex polymers also changed with the properties of LNB aqueous solutions, accompanying the change of the ionic form of LNB molecules.  相似文献   

13.
以乙醇 乙二醇单甲醚 (EOH EGME)为介质 ,羟丙基纤维素 (HPC)为稳定剂 ,偶氮二异丁腈 (AIBN)为引发剂进行了苯乙烯和二乙烯基苯的分散共聚合研究 .制得粒径在 6~ 10 μm范围内的单分散交联聚苯乙烯微球 (CPS) .探讨了不同介质配比 ,以及苯乙烯、二乙烯基苯、引发剂的浓度对微球大小、粒径分布、聚合速率及稳定性的影响 .当苯乙烯和AIBN浓度增加时 ,聚合速率和平均粒子尺寸增加 ,而粒子分布变宽 ,粒子数先增加 ,而后降低 .随着EOH EGME比例的增加 ,平均粒子尺寸增加 ,而分布指数降低 ,稳定剂增加 ,粒子尺寸降低和粒子数增加 ,但对聚合速率及粒子分布影响不太明显 .另外还探讨了单体和交联剂的后滴加法对微球大小、粒径分布的影响  相似文献   

14.
Zhang PC  Liu J  Chew CH  Gan LM  Li SF 《Talanta》1998,45(4):767-773
A new type of latex particle was prepared by copolymerization of styrene and poly(ethylene oxide) macromonomer. By controlling the concentration of styrene in reaction mixtures, several latexes with different grain sizes were obtained. The packing patterns of the latex films as well as shapes and sizes of the latex particles were measured with atomic force microscopy (AFM). AFM images revealed that the grain sizes of the latexes increase with increasing concentration of styrene. At a higher styrene concentration (10 wt%), the latex showed a rather homogenous distribution of grain sizes. Lateral force microscopy (LFM) was used to reveal frictional features of latex particles. Contact and non-contact mode AFM were employed to image the same sample of the latex films. The results show that AFM working in non-contact mode can be used to effectively eliminate the horizontal-line-like artifacts, which may obscure AFM images.  相似文献   

15.
 Radical dispersion polymerization of styrene in aqueous ethanol solutions was performed in the presence of a new reactive polyethylene oxide stabilizer with thiol end groups. This reactive stabilizer was compared to the more conventional poly (N-vinyl pyrrolidone). Particles size distribution, molecular weights and kinetics were investigated. Monodispersed polymer particles with diameter in the range 200–2000 nm were obtained depending on the amount of stabilizer used. In all cases, the polyethylene oxide (PEO) sequence of the dispersant was partly incorporated at the surface of the latex particles, but the grafting yield of polyethylene oxide chains was always limited and did not exceed 15%. Part of the stabilizer being unreacted or reacted with low molecular weight polystyrene remained in the continuous phase. Received: 26 September 1996 Accepted: 4 March 1997  相似文献   

16.
In order to obtain functional polymer latex particles with clean surface and with surface carboxyl groups, P(MMA-EA) seed particles with the diameter of 335 nm were first synthesized via soap-free batch emulsion polymerization of methyl methacrylate (MMA) and ethyl acrylate (EA), and then the seeded emulsion copolymerization of MMA, EA and MAA (methacrylic acid) onto the seed particles were performed in the absence of emulsifier. Influences of ingredients and conditions on polymerization, latex particle size (Dp) and its distribution were investigated. Results showed that most of the monomers polymerized onto the seed latex particles in the second step of polymerization by using drop-wise addition method, and Dp increased from 483 nm to 829 nm with the mass ratio of core/shell monomers [C]/[S] decreased from 1:2 to 1:15. It was found that Dp decreased with the increase of MAA and initiator amounts, and the size of the latex particles became uniform with the decrease of MAA amount and with the increase of [C]/[S] value.  相似文献   

17.
An emulsion polymerization of styrene in the presence of an amphoteric surfactant; N,N-dimethyl-n-laurylbetaine (LNB) was carried out at pH 7.0. The polymerization rate and the concentration of the latex particle were proportional to the LNB concentration of 0.6 power. The latex particle sizes became smaller with increasing concentrations of LNB. The molecular weights of polystyrene latices increased with the concentration of LNB. The zeta-potentials of latex particles were significantly dependent on the pH, and showed the existence of an isoelectric point.  相似文献   

18.
The effects of ionic emulsifier, sodium dodecylbenzene sulfate (SDBS), on the formation of the multihollow structures in sub-micron sized polymer particles produced by alkali/acid posttreatment were investigated. The original latex particles with narrow size distribution were synthesized by a new sequence emulsifier-free/emulsifier emulsion copolymerization of styrene (St) and methacrylic acid (MAA). Results indicated that the pore size decreased and the pore number increased with the increase of SDBS amount, and the morphology of the posttreated latex particles was also significantly influenced by the introducing time of SDBS in the preparation of the original latex particles, and a suitable introducing time was 3 h of polymerization.  相似文献   

19.
Soap-free hydrophilic-hydrophobic core-shell latex particles with high carboxyl content in the core of the particles were synthesized via the seeded emulsion polymerization using methyl methacrylate(MMA),butyl acrylate(BA), methacrylic acid(MAA),styrene(St)and ethylene glycol dimethacrylate(EGDMA)as monomers,and the influences of MMA content used in the core preparation on polymerization,particle size and morphology were investigated by transmission electron microscopy,dynamic light scattering and conductometric titration.The results showed that the seeded emulsion polymerization could be carried out smoothly using "starved monomer feeding process" when MAA content in the core preparation was equal to or less than 24 wt%,and the encapsulating efficiency of the hydrophilic P(MMA-BA-MAAEGDMA) core with the hydrophobic PSt shell decreased with the increase in MAA content.When an interlayer of P(MMAMAA -St)with moderate polarity was inserted between the P(MMA-BA-MAA-EGDMA)core and the PSt shell,well designed soap-free hydrophilic-hydrophobic core-shell latex particles with 24 wt%MAA content in the core preparation were obtained.  相似文献   

20.
Batch emulsifier-free copolymerizations of styrene (S) and butyl acrylate (BuA) have been performed for a S/BuA weight ratio = 50/50 in the presence of two types of functional comonomers [methacrylic acid (MAA) at different pHs] or potassium sulfopropylmethacrylate (SPM) and two initiators [potassium persulfate or 4–4′azobiscyanopentanoic acid (AZO)]. The use of AZO/MAA system results in the formation of polymer particles with only surface carboxylic end groups. The particle size of the final latexes can be adjusted with the MAA concentration, provided the polymerization is carried out at pH > 6.5. However, the higher the MAA concentration, the sooner the polymerization levels off in conversion. With the K2S2O8/SPM system, particles bearing only sulfate and sulfonate groups are produced and the polymerization is complete. In that case, the particle size of the final latexes is smaller than with the previous system and 30% of the SPM is fixed on the particle surface, instead of 10% with MAA. Using SPM, a too high functional monomer concentration results in the latex destabilization caused by the formation of a large amount of polyelectrolytes. Kinetic studies indicate that most of the functional monomer is incorporated onto the particle surface during the last 30% conversion of the polymerization. A tentative explanation of such a behavior is discussed, based on the existence of two polymerization loci in the latex system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号