首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We observe, with angle-resolved photoemission, a dramatic change in the electronic structure of two C60 monolayers, deposited, respectively, on Ag (111) and (100) substrates, and similarly doped with potassium to half filling of the C60 lowest unoccupied molecular orbital. The Fermi surface symmetry, the bandwidth, and the curvature of the dispersion at Gamma point are different. Orientations of the C60 molecules on the two substrates are known to be the main structural difference between the two monolayers, and we present new band-structure calculations for some of these orientations. We conclude that orientations play a key role in the electronic structure of fullerides.  相似文献   

2.
利用基于密度泛函理论的第一性原理平面波超软赝势法对Mg~(2+)掺杂锰酸锂的晶格常数与能带结构、态密度、键布居进行计算和分析,计算结果表明:掺杂Mg~(2+)后将会促使Mn、 O原子的电荷重新分布且其相互作用加强,能带带隙减小,费米能级附近的带数增加,费米能由-1.29 eV增加到-1.02 eV, Mn、 O、 Mg在总态密度中贡献比较大,锂离子贡献比较小且峰型尖锐局域化严重,提高了Li~+的扩散效率, Mn—O键变短,共价性增强,形成的共价键较稳定,其相互作用形成的骨架较稳定不易坍塌.从而提高了材料的循环充放电性能和电池使用寿命.  相似文献   

3.
4.
Crystalline LiMn2O4 materials were synthesized through a low temperature reflux (LTR) process. The LTR material exhibits an essential electrochemical behavior to present only one transition during the charge/discharge process and gives promises for the future application. The X-ray data hardly distinguishes either conventional high temperature (HT) or LTR material since both materials possess similar molecular structure. However, solid-state NMR results suggest substantial difference for their electronic structure. The 7Li-NMR of HT material exhibits the isotropic peak at 529 ppm and spreads for 160 kHz wide indicating the interaction between the lithium nucleus and the conducting electrons around the nucleus. The LTR material presents the main isotropic peak at 217 ppm but spreads for almost 400 kHz wide asymmetrically implying the existence of multiple electronic environments.  相似文献   

5.
Three-dimensional (3D) topological insulators represent a new state of quantum matter with a bulk gap and odd number of relativistic Dirac fermions on the surface. The unusual surface states of topological insulators rise from the nontrivial topology of their electronic structures as a result of strong spin-orbital coupling. In this review, we will briefly introduce the concept of topological insulators and the experimental method that can directly probe their unique electronic structure: angle resolved photoemission spectroscopy (ARPES). A few examples are then presented to demonstrate the unique band structures of different families of topological insulators and the unusual properties of the topological surface states. Finally, we will briefly discuss the future development of topological quantum materials.  相似文献   

6.
LiMn2O4/graphite batteries using AlF3-coated LiMn2O4 have been fabricated and their electrochemical performance including discharge capacity and cyclic and storage performances have been tested and compared with pristine LiMn2O4/graphite batteries. The LiMn2O4/graphite battery with AlF3-coated LiMn2O4 shows better capacity (108.5 mAhg?1), cyclic performance (capacity retention of 92.7 % after 70 cycles), and capacity recovery ratio (98.6 %) than the pristine LiMn2O4 battery. X-ray diffraction patterns shows that the spinel structure of AlF3-coated LiMn2O4 can be controlled better than that of pristine LiMn2O4 after storage. The improvement in electrochemical performance of the AlF3-coated LiMn2O4/graphite battery is due to the fact that AlF3 acts as a stabilizer and can protect the oxide structure from damaging during storage, leading to a smaller resistance and polarization after storage.  相似文献   

7.
From photoemission and electron-energy-loss data the following picture of KMnO4, with MnVII (with a formal charge state Mn7+ (3d 0)) tetrahedrally surrounded by four O2–-ions, is deduced: strong covalent bonding between MnVII and O2– leads to a considerable occupation of the Mn-3 d shell. The ground state of the (MnO4)–1 molecule is an orbital and spin singlet as seen by the absence of any multiplet splitting in the Mn core levels. The valence band shows a four peak structure extending form 4 eV to 8 eV below the Fermi energy. The first peak at 4.2 eV has mainly O-2p character. The remaining peaks are of strongly mixed Mn-3d/O-2p character due to the covalent bonding. This mixing decreases with increasing binding energy. The electron energy loss data show a variety of structures between 2 eV and 10 eV independent of the primary electron energy which defines them as dipole allowed charge-transfer transitions. An additional excitation at 1.8 eV decreases quickly in intensity with increasing electron energy which classifies it as a dipole or spin forbidden transition in the compound. This energy is close to the value of 1.6 eV reported for the activation energy observed in electrical transport data. The results are compared to quantum chemical molecular orbital calculations of the (MnO4)–1 molecule.Physics Department, Allahabad University Allahabad 211002, India  相似文献   

8.
采用基于密度泛函理论(DFT)的第一性原理赝势平面波方法, 通过自旋极化的广义梯度近似(GGA)电子结构计算对梯形化合物NaV2O4F进行了研究. 考虑了四种假想的自旋有序态, 计算结果表明该化合物的磁基态具有二维反铁磁(AFM)结构, 即沿梯阶和梯腿方向都表现为AFM作用. 能带结构显示NaV2O4F为绝缘体材料, 带隙约为1.0 eV. 方锥体中的晶体场劈裂使得VO4F方锥体中的 V4+(3d1)离子的未配对电子填充dxy轨道. 电负性极强的F离子使得梯阶上的共价性减弱,并导致梯阶上的交换作用减弱. 采用Noodleman的对称性破缺方法由Ising模型拟合出的自旋交换耦合常数表明NaV2O4F的梯间还存在强度与梯阶的AFM作用相当的铁磁(FM)相互作用, 说明该梯形化合物很可能不是一种自旋梯材料.  相似文献   

9.
The dielectric properties of cubic spinel-type LiMn2O4, used as cathode material in lithium ion secondary batteries, are studied by analyzing the low-loss region of the electron energy loss spectroscopy (EELS) spectrum in a transmission electron microscope. A comparison of experimental EELS spectra and ab initio density-functional theory calculations (WIEN2k code) within the generalized gradient approximation (GGA) is presented. The origins of interband transitions are identified in the electronic band structure, by calculating the partial imaginary part of the dielectric function and the partial density of states of Li, Mn and O. Good agreement with experimental spectra is observed which allowed interpreting main features of the EELS spectrum.  相似文献   

10.
The electron structure of CuIn1 ? x Ga x Se2 single crystals is determined via resonant photoemis-sion and the main regularities of its transformation upon varying concentration x from 0 to 1 are established. The dependence of the shape of valence band spectra on the photon energy is studied. Integral photoemission intensities are shown to be determined by atomic photoionization cross sections. Processes of the direct and two-step creation of photoelectrons accompanying photoemission and the participation of internal states in the spectra of electrons from valence bands are studied. Two-hole final states in photoemission are obtained upon threshold excitation of the Cu 2p level. The strong interaction of holes leads to the multiplet splitting of these states. Partial densities of the components’ states are determined using the energy dependence of atomic photoionization cross sections.  相似文献   

11.
12.
LiMn2O4 films have been deposited onto silicon wafer by pulsed-laser deposition (PLD) technique in order to test their reliability as cathode materials in rechargeable lithium microbatteries. The film formation has been studied as a function of the preparation conditions, i.e., composition of the target, substrate temperature, and oxygen partial pressure in the deposition chamber. Depending on the conditions of deposition, Mn2O3 was present as an impurity phase. When deposited onto silicon substrate maintained at 300 °C in an oxygen pressure of 100 mTorr from the target LiMn2O4+15 % Li2O, the PLD films are well-textured with crystallite size of 300 nm. It is found that such a film crystallizes in the spinel structure (Fd3m symmetry) as evidenced by x-ray diffraction and Raman scattering measurements. Surface morphologies of layers were investigated by SEM. The cells Li//LiMn2O4 have been tested by cyclic voltammetry and galvanostatic charge-discharge techniques in the range 3.0–4.2 V. The voltage profiles show the two expected steps for LixMn2O4 with a specific capacity as high as 120 mC/cm2 μm. The chemical diffusion coefficients for the LixMn2O4 thin films appear to be in the range of 10−11-10−12 cm2/s. Paper presented at the 6th Euroconference on Solid State Ionics, Cetraro, Calabria, Italy, Sept. 12–19, 1999.  相似文献   

13.
《中国物理 B》2021,30(6):67403-067403
High resolution angle resolved photoemission measurements and band structure calculations are carried out to study the electronic structure of BaMnSb_2. All the observed bands are nearly linear that extend to a wide energy range. The measured Fermi surface mainly consists of one hole pocket around Γ and a strong spot at Y which are formed from the crossing points of the linear bands. The measured electronic structure of BaMnSb_2 is unusual and deviates strongly from the band structure calculations. These results will stimulate further efforts to theoretically understand the electronic structure of BaMnSb_2 and search for novel properties in this Dirac material.  相似文献   

14.
It was found for the first time that the catalysis of yttrium doping of spinel LiMn2O4 can enhance the electrochemical activities of manganese, leading to both improvement of electrochemical capacity and reactivity with the electrolyte of manganese. A proper amount of doping was 0.5%, and such yttrium-doped sample, Li(Y0.005Mn0.995)2O4, had an initial capacity of 130 mAh g−1 over that of the undoped one with the capacity retention to reach 92.3% exceeding that of the undoped one at 100th cycle.  相似文献   

15.
Resonant photoemission has provided important new means to study the properties of the 4f electron states in the light lanthanides. These investigations have revealed unexpectedly complex 4f spectral shapes. This has led to new insight into the problem of the 4f systems. Some recent results for Ce are reviewed and it is shown how these disprove the previously accepted promotional model for Ce. The results are briefly discussed in terms off-hybridization and possible band formation. Some expected future experimental developments are also discussed.  相似文献   

16.
Ti/GaN interface formation on GaN(0 0 0 1)-(1 × 1) surface has been investigated by means of resonant photoelectron spectroscopy (for photon energies near to Ti 3p → 3d excitation). The sets of photoelectron energy distribution curves were recorded for in situ prepared clean GaN surface and as a function of Ti coverage followed by post-deposition annealing. Manifestations of chemical reactions at the Ti/GaN interface were revealed in the valence band spectra as well as in the Ga 3d core level peak—the discerned contribution of Ti 3d states to the valence band turned out to be similar to that reported in the literature for titanium nitride. The interaction between Ti and N was further enhanced by post-deposition annealing. The study was complemented with SIMS and AFM measurements.  相似文献   

17.
An independent electron molecular orbital theory is applied to all valence electrons of saturated hydrocarbons, using the 2s and 2p atomic orbitals of carbon and the 1s orbitals of hydrogen as a basis. It is shown that certain results about uniformity of charge distribution, already known for π-electrons, apply to all valence electrons in paraffins under conditions more general than those which lead to localized bonding. An attempt is then made to estimate the extent of electron delocalization in paraffins by calculating long-range molecular orbital bond orders and the associated contributions to energy stabilization. This is done by a perturbation method, the features causing delocalization being introduced as a perturbation of a theory of completely localized bonds. It is concluded that delocalization may arise from (1) the difference between atomic 2s and 2p energies, (2) bonding between non-neighbouring atoms and (3) partial π-bonding in carbon-carbon bonds. The first two causes lead to geminal interactions, but tend to cancel each other. Partial π-bonding leads to vicinal delocalization which may be considerable and is greatest in the trans configuration. The total energy correction due to delocalization is calculated and found to be quite large, but this is shown to be consistent with the established approximate additivity of bond energies.  相似文献   

18.
Ling Zhao  Enshan Han  Lingzhi Zhu  Yanpu Li 《Ionics》2014,20(8):1193-1200
Cathode material LiMn1.95Co0.05O4 for lithium ion battery was synthesized via solid state reaction, and calcination temperature and time were investigated, respectively. Thermogravimetry (TG) and differential thermal analysis (DTA) measurements were utilized to determine the calcination temperature of precursor sample. The optimized calcination temperature and time are 850 °C and 15 h. The surface of LiMn1.95Co0.05O4 cathode is coated using Al2O3 coating materials. The phase structures, surface morphologies, and element types of the prepared LiMn1.95Co0.05O4 and Al2O3-coated LiMn1.95 Co0.05O4 were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and energy spectrum analysis (EDS). The 0.5 wt% Al2O3-coated compound exhibited better specific capacity and capacity retention than bare sample. The initial discharge capacity was 140.9 mAh/g and capacity retention was 96.7 % after 10 cycles at 0.1 C. Such enhancements are attributed to the presence of a stable Al2O3 layer which acts as the interfacial stabilizer on the surface of LiMn1.95Co0.05O4.  相似文献   

19.
Wei Hu 《中国物理 B》2022,31(9):98202-098202
The spinel-type LiMn$_{2}$O$_{4}$ is a promising candidate as cathode material for rechargeable Li-ion batteries due to its good thermal stability and safety. Experimentally, it is observed that in this compound there occur the structural phase transitions from cubic ($Fd\bar{3}m)$ to tetragonal ($I4_{1}/{amd}$) phase at slightly below room temperature. To understand the phase transition mechanism, we compare the Gibbs free energy between cubic phase and tetragonal phase by including the configurational entropy. Our results show that the configurational entropy contributes substantially to the stability of the cubic phase at room temperature due to the disordered Mn$^{3+}$/Mn$^{4+}$ distribution as well as the orientation of the Jahn-Teller elongation of the Mn$^{3+}$O$_{6}$ octahedron in the the spinel phase. Meanwhile, the phase transition temperature is predicted to be 267.8 K, which is comparable to the experimentally observed temperature. These results serve as a good complement to the experimental study, and are beneficial to the improving of the electrochemical performance of LiMn$_{2}$O$_{4}$ cathode.  相似文献   

20.
Zhang  Ligong  Zhang  Yurong  Yuan  Xuehong 《Ionics》2015,21(1):37-41
Ionics - LiMnPO4/LiMn2O4 (LMP/LMO) composite cathodes with LMP coating on the surface of LMO were synthesized by hydrothermal method at 180 °C for 10 h. The crystal...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号