首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用自旋极化密度泛函和广义梯度近似的方法并结合周期平板模型,探讨了不同覆盖度(θ)下双金属簇X (X=Pt-Au, Au-Au)在(3×2)TiO2(110)完整表面上的吸附行为.另外,在本文给出的所有覆盖度模式下(θ=1/6-1 ML),我们仅研究其基态构型.计算结果表明:当θ<1/2 ML时,金属簇X在TiO2(110)表面上吸附能随覆盖度的增加而增加;当θ>1/2 ML时,除了饱和覆盖度下,吸附能随覆盖度的增加而减小;当θ=1/2 ML时,吸附能最大.即使Pt-Au/TiO2体系的吸附能比Au-Au/TiO2体系的小,但相对于Au-Au簇, Pt-Au簇更容易在TiO2(110)表面上形成双金属单分子层.在半覆盖和全覆盖下, X簇的峰与TiO2的峰在-3.0 eV到费米能级之间产生明显重叠,表明簇与底物之间存在化学作用.且当覆盖度小时, X-TiO2相互作用是成簇的主要因素;随着覆盖度的增大, X-X原子间相互作用就逐渐变成了成簇的主要动力  相似文献   

2.
用基于密度泛函理论的第一性原理方法研究了Nb(110)表面氧原子覆盖度分别为0.25、0.50、0.75 和1.00单层时对氧分子解离的影响. 结果表明, 在氧原子覆盖度不大于0.50单层时, 由于氧分子和表面铌原子的较强相互作用, 使它们能够自发解离. 然而在氧原子覆盖度为0.75单层时, 氧分子只能够在未占据的洞位附近解离, 同时发生严重的晶格畸变. 在形成一个氧原子单层后(1.00 单层), 氧分子只能弱吸附在Nb(100)表面上,此时氧原子向内扩散成为氧分子继续解离的速率决定步骤. 这些结果从理论上解释了在形成一个氧原子单层后, Nb(110)表面氧分子吸收速率迅速下降的原因.  相似文献   

3.
利用密度泛函理论(DFT)总能计算研究了Ni(110)-p2mg(2×1)-CO表面的原子结构和电子态. 计算结果表明: CO分子吸附于该表面的短桥位附近, 分子吸附能为1.753 eV, CO分子的键长dC—O为0.117 nm, 分子与表面竖直方向的夹角为20.0°, 碳原子和短桥位中点的连线与竖直方向的夹角为20.9°; 吸附的CO分子内原子间的伸缩振动频率为1876和1803 cm-1. 态密度研究结果表明吸附作用主要来自CO分子π、σ轨道与衬底d轨道间的杂化作用. CO分子σ轨道和衬底表面镍原子dxz轨道杂化形成的表面电子态主要位于费米能以下-10.4 至-8.8 eV和-7.4至-5.1 eV 范围内. σ和dxz轨道间的杂化作用可能是形成p2mg表面对称性的重要因素之一.  相似文献   

4.
采用DFT/B3LYP方法研究了TiO2 ( 110 )的完整和氧缺陷表面的弛豫构型 ,并对O2 在氧缺陷表面的三种可能吸附构型进行了优化 ,计算了它们的吸附能、振动频率和重叠布居 .分析并预测了吸附后可能产生的物种 .本文的计算结果与XPS ,TPD和ELS等实验吻合  相似文献   

5.
朱佳  金华  李奕  黄昕  章永凡 《化学学报》2011,69(8):905-911
采用基于第一性原理的分子动力学和量子力学相结合的方法, 对非化学计量比富氧型钨氧化物团簇W3O10在TiO2(110)表面负载的构型和电子结构进行了系统研究. 研究结果表明, 热力学最稳定的负载构型为W3O10团簇通过端氧原子和W原子形成四根Ti-O键和两根W-O键吸附在TiO2(110)表面. 负载W3O10团簇后, 有较多电子从TiO2表面转移到团簇上, TiO2表面不再保持半导体性质, 相应地, 表面功函上升. 比较负载前后团簇的稳定性可知, 可以通过沉积在合适的固体表面来稳定气相中的不稳定构型.  相似文献   

6.
采用基于第一性原理的密度泛函理论结合周期平板模型方法, 研究了甲醇分子在FeS2(100)完整表面的吸附与解离. 通过比较不同吸附位置的吸附能和构型参数发现: 表面Fe位为有利吸附位, 甲醇分子通过氧原子吸附在表面Fe位, 吸附后甲醇分子中的C―O键和O―H键都有伸长, 振动频率发生红移; 甲醇分子易于解离成甲氧基CH3O和H, 表面Fe位仍然是二者有利吸附位. 通过计算得出甲醇在FeS2(100)表面解离吸附的可能机理: 甲醇分子首先发生O―H键的断裂, 生成甲氧基中间体, 继而甲氧基C―H键断裂, 得到最后产物HCHO和H2.  相似文献   

7.
采用密度泛函理论(DFT)研究了氧吸附后Pt/Cu(001)表面合金的原子结构和表面性质. 计算结果表明, 在Pt/Cu(001)-p(2×2)-O表面最稳定结构中, 衬底表面原子层不发生再构, 氧原子吸附于4重对称的Pt原子谷位, 每个氧原子吸附能约为2.303 eV. 吸附结构的Cu—O和Pt—O键键长分别为0.202和0.298 nm, 氧原子的吸附高度ZCu—O约为0.092 nm. 吸附前后Pt/Cu(001)-1ML(monolayer)表面合金的表面功函数分别为4.678和5.355 eV. 吸附表面氧原子和衬底的结合主要来自氧原子2p轨道和衬底金属原子d轨道的杂化作用, 氧原子吸附形成的表面电子态主要位于费米能级以下约-2.7 eV 处.  相似文献   

8.
用基于第一性原理的密度泛函理论研究了W(100) c(2×2)再构表面的表面弛豫以及扫描隧道显微镜(STM)图像和衬底偏压的关系. 计算所得到的表面原子沿[-110]方向的畸变位移δ为0.027 nm, 畸变能⊿E为80.6 meV·atom-1, 表面原子的弛豫分别为-7.6%(⊿d12/d0)和+0.8%(⊿d23/d0), 功函数Φ为4.55 eV. STM图像模拟表明, 由于表面原子沿[-110]方向的位移, 会导致出现平行于[110]方向的亮暗带状条纹. STM图像中突起所对应的并不是表面或次表面的钨原子, 而是zig-zag型W 原子链中线位置; 而STM暗区对应于原子位置畸变形成的相邻zig-zag型W原子链中间区域. 当衬底负偏压时, STM针尖典型起伏高度大约在0.008-0.013 nm之间; 而当衬底正偏压时, 针尖起伏高度在0.019-0.024 nm之间变化.  相似文献   

9.
We have studied the relaxation of Na(110) and Na_2O(111) surfaces with LEED, and found that the best agreement between theory and experiment in such a structure, the surface layer distance d=0.291±0.01 nm (contracted 0.34%±0.01 nm) [for Na(110)]; and the three atomic surface layer distances d_1=0.117±0.01 nm (expanded 4.63%±0.01 nm), d_2=0.161±0.01 nm(expanded 0.063%±0.01 nm) and d_3=0.086±0.01 nm (expanded 0.75%±0.01 nm) [for Na_2O(111)].  相似文献   

10.
李赣  罗文华  陈虎翅 《物理化学学报》2011,27(10):2319-2325
采用广义梯度密度泛函理论研究了0.25ML覆盖度下CO2在α-U(001)表面上的吸附和解离,得到了CO2的稳定吸附构型和吸附能,确定了CO2的解离过渡态和解离能垒,探讨了CO2与表面U原子的相互作用本质.结果表明CO2趋向以C(O)-U多键结合方式在α-U(001)面发生强化学吸附,吸附能为1.24-1.67 eV;C-O键的活化程度依赖于表面电子向CO2发生转移的程度.CO2与表面U原子的相互作用主要来自于U原子电子向CO2最低空轨道(LUMO)2πu转移,以及CO2πu/1πg/3σu-U 6d轨道间杂化而生成新的化学键.以形成3个C-U键和6个O-U键模式在穴位1和穴位2上发生吸附的CO2(H1-C3O6和H2-C3O6)的解离吸附能分别为3.15和3.13 eV,解离能垒分别为0.26和0.36 eV,预示着吸附CO2分于易于解离形成CO分子和O原子.  相似文献   

11.
在密度泛函理论的框架下, 采用嵌入点电荷簇模型研究了O2在MgO(001)完整和缺陷表面上的吸附.用电荷自洽的方法确定了点电荷的值.计算结果表明, O2倾向吸附在低配位的角Mg2+端.并且发现, 当O2为平躺吸附时,键长有较大的拉伸,将有利于O2的解离.同时,分别计算了使用裸簇和嵌入表观±2.0 e点电荷簇模型时的吸附能,并与采用电荷自洽方法的计算值进行了比较.结果表明,电荷自洽方法更能有效反映簇周围的环境,得到的计算结果能够较好地与实验值吻合.最后,分别计算了不同吸附情况下O2的振动频率.  相似文献   

12.
利用俄歇电子能谱(AES)和程序升温脱附谱(TDS)研究了NO2在Ag/Pt(110)双金属表面的吸附和分解.室温下NO2 在Ag/Pt(110)双金属表面发生解离吸附, 生成NO(ads)和O(ads)表面吸附物种. 在升温过程中NO(ads)物种发生脱附或者进一步分解. 500 K时NO2在Ag/Pt(110)双金属表面发生解离吸附生成O(ads)表面吸附物种. Pt 向Ag传递电子, 从而削弱Pt-O键的强度, 降低O(ads)从Pt 表面的并合脱附温度. 发现能够形成具有稳定组成的Ag/Pt(110)合金结构, 其表现出与Pt(110)-(1×2)相似的解离吸附NO2能力, 但与O(ads)的结合明显弱于Pt(110)-(1×2). 该AgPt(110)合金结构是可能的低温催化直接分解氮氧化物活性结构.  相似文献   

13.
采用基于赝势平面波基组的密度泛函理论, 对不同Li原子覆盖度下Li/Si(001)体系的吸附构型、电子结构以及吸附Li原子对表面性质的影响进行了系统研究. 计算结果表明, 在所考察的覆盖度范围内, Li原子倾向于吸附在相邻两个Si-Si二聚体之间各种对称性较高的空穴位, 其中覆盖度为0.75 ML(monolayer)时具有最小的平均吸附能. 由能带结构分析结果可知, 随着覆盖度的增大, Si(001)表面存在由半导体→导体→半导体的变化过程. 在覆盖度为1.00 ML时, 由于表层二聚体均受到显著破坏, 使得体系带隙明显增大. 吸附后, 有较多电子从Li原子转移到底物, 导致Si(001)表面功函显著下降, 并随着覆盖度的增加表面功函呈现振荡变化. 此外, 从热力学稳定性角度上看, 覆盖度为0.75 ML的Li/Si(001)表面较难形成.  相似文献   

14.
用延展X射线吸收精细结构(EXAFS)光谱和密度泛函理论(DFT)研究了As(V)-TiO2体系的吸附机理. 离子强度变化对As(V)-TiO2体系吸附无显著影响, 表明吸附后形成了内层络合物. EXAFS结果表明, As(V)原子主要通过—AsO4上的O原子结合到TiO2表面上, 平均As-O原子间距(R)在吸附前后无明显变化, 保持在(0.169±0.001) nm. As-Ti层的EXAFS分析结果与DFT计算的吸附构型的As-Ti原子间距对照表明, 体系存在两种主要亚稳平衡吸附(MEA)结构, 即对应于R1=(0.321±0.002) nm 的双角(DC)强吸附构型和R2=(0.360±0.002) nm的单角(SC)弱吸附构型. 而且随着吸附量由9.79 mg·g-1增加至28.0 mg·g-1, 吸附样品中双角构型配位数与单角构型配位数的比值(CN1/CN2)从3.3降低到1.6, 说明双角亚稳平衡吸附结构在低覆盖度时占优势, 而在高表面覆盖度时单角亚稳平衡吸附结构占优势, 即在表面覆盖度较大时, As(V)在TiO2表面上倾向于形成单角构型.  相似文献   

15.
CO在CeO2(111)表面的吸附与氧化   总被引:2,自引:0,他引:2  
采用密度泛函理论计算了CO在CeO2(111)表面的吸附与氧化反应行为. 结果表明, O2在洁净的CeO2(111)表面为弱物理吸附, 而在氧空位表面是强化学吸附, 且O2分子活化程度较大, O—O键长为0.143 nm. CO在CeO2(111)表面吸附行为的研究表明, CO在洁净表面及氧空位表面上为物理吸附, 吸附能均小于0.42 eV; 当表面氧空位吸附O2后, CO可吸附生成二齿碳酸盐中间体或直接生成CO2, 与原位红外光谱结果相一致. 表面碳酸盐物种脱附生成CO2的能垒仅为0.28 eV. 计算结果表明, 当CeO2表面存在氧空位时, Hubbard参数U对CO吸附能有一定的影响. CeO2载体在氧化反应中可能的催化作用为, 在氧气氛下, CeO2表面氧空位吸附O2分子, 形成活性氧物种, 参与CO催化氧化反应.  相似文献   

16.
用基于密度泛函理论的第一性原理方法研究了Cu团簇(Cux, x=1-4)在CeO2(111)表面的吸附. 研究发现当团簇比较小时(x=2, 3), 倾向于平铺表面; 当x=4时, Cu团簇在CeO2(111)表面以三维的四面体结构吸附较为稳定, 从Cu 3d到Ce 4f的电荷转移使Cu团簇带正电荷. 由二维的菱形结构到三维的四面体结构的转变势垒为1.05 eV, 并且其中一个Cu原子直接迁移到另外三个Cu原子的空位顶部的转变路径比较有利. 在Cu团簇与CeO2的相互作用过程中, Cu-O和Cu-Cu相互作用的竞争最终决定了Cu团簇在CeO2上的形貌. 这种CeO2(111)负载的带正电的三维Cu团簇将对水分解, 进而对水煤气反应具有高的催化活性.  相似文献   

17.
利用密度泛函理论系统研究了O2与CO在CeO2(110)表面的吸附反应行为. 研究表明, O2在洁净的CeO2(110)表面吸附热力学不利, 而在氧空位表面为强化学吸附, O2分子被活化, 可能是重要的氧化反应物种. CO在洁净的CeO2(110)表面有化学吸附与物理吸附两种构型, 前者形成二齿碳酸盐物种, 后者与表面仅存在弱的相互作用. 在氧空位表面, CO可分子吸附或形成碳酸盐物种, 相应吸附能均较低. 当表面氧空位吸附O2后(O2/Ov), CO可吸附生成碳酸盐或直接生成CO2, 与原位红外光谱结果相一致. 过渡态计算发现,O2/Ov/CeO2(110)表面的三齿碳酸盐物种经两齿、单齿过渡态脱附生成CO2. 利用扩展休克尔分子轨道理论分析了典型吸附构型的电子结构, 说明表面碳酸盐物种三个氧原子电子存在离域作用, 物理吸附的CO及生成的CO2电子结构与相应自由分子相似.  相似文献   

18.
采用密度泛函理论与周期性平板模型相结合的方法,对CO在Pt(111)表面top,fcc,hcp和bridge 4个吸附位和Pt-M(111)(M=Ni,Mg)表面h-top,M-top,Pt(M)Pt-bridge,Pt(M)M-bridge,Pt(Pt)M-bridge,M(Pt)M-bridge,Pt1M2-hcp...  相似文献   

19.
Si_2C_(m-2)(m=4~15)团簇的结构与稳定性   总被引:1,自引:0,他引:1  
用密度泛函理论(DFT)的B3LYP/6-31G*方法, 对Si2Cm-2(m = 4~15)团簇的几何构型、电子结构、振动频率等性质进行了研究, 讨论了化学键的特征和热力学稳定性, 比较了Si2Cm-2团中环状和线状结构的差异。结果表明, m = 4~13的团簇为线状结构, m=14~15的团簇为环状结构。在线状结构中, 随着m增大, 自旋多重度出现1、3交替变化, 并且Si原子倾向于在C链端部成键;环状结构中, C原子形成环状, 2个Si原子处于椭圆环状构型的两端。m 为奇数的Si2Cm-2团簇比m为偶数的更为稳定。  相似文献   

20.
采用密度泛函理论(DFT)中广义梯度近似(GGA)方法, 对Pt原子与γ-Al2O3(001)面的相互作用及迁移性能进行了研究. 分析了各种可能吸附位及吸附构型的松弛和变形现象, 吸附能和迁移能垒的计算结果表明: Pt团簇能够稳定吸附在该表面. Pt原子在表面O位的吸附能明显较高, 这主要是由Pt向基底O原子转移了电子所致. 电荷布居分析表明, Pt原子显电正性, Pt和Al原子之间存在排斥作用, 导致与Al原子产生较弱相互作用. 计算的平均吸附能大小依赖于Pt团簇的大小和形状, 总体趋势是随着Pt原子数增多, 吸附能降低. Pt原子在γ-Al2O3(001)表面迁移过程所需克服的迁移能垒最高值为0.51 eV. 随着吸附的Pt原子数增多,更倾向于形成Pt团簇. 因此, Pt原子在γ-Al2O3(001)表面的吸附演变不可能形成光滑、均匀平铺的吸附构型, 而在一定条件下容易出现团聚.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号