首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Limited natural resources and an increasing demand for enantiomerically pure compounds render catalysis and especially heterogeneous asymmetric catalysis a key technology. The field has rapidly advanced from the initial use of chiral biopolymers, such as silk, as a support for metal catalysts to the modern research areas. Mesoporous supports, noncovalent immobilization, metal-organic catalysts, chiral modifiers: many areas are rapidly evolving. This Review shows that these catalysts have more to them than facile separation or recycling. Better activities and selectivities can be obtained than with the homogeneous catalyst and novel, efficient reaction mechanisms can be employed. Especially fascinating is the outlook for highly ordered metal-organic catalysts that might allow a rational design, synthesis, and the unequivocal structural characterization to give tailor-made catalysts.  相似文献   

2.
X-ray microscopic techniques are excellent and presently emerging techniques for chemical imaging of heterogeneous catalysts. Spatially resolved studies in heterogeneous catalysis require the understanding of both the macro and the microstructure, since both have decisive influence on the final performance of the industrially applied catalysts. A particularly important aspect is the study of the catalysts during their preparation, activation and under operating conditions, where X-rays have an inherent advantage due to their good penetration length especially in the hard X-ray regime. Whereas reaction cell design for hard X-rays is straightforward, recently smart in situ cells have also been reported for the soft X-ray regime. In the first part of the tutorial review, the constraints from a catalysis view are outlined, then the scanning and full-field X-ray microscopy as well as coherent X-ray diffraction imaging techniques are described together with the challenging design of suitable environmental cells. Selected examples demonstrate the application of X-ray microscopy and tomography to monitor structural gradients in catalytic reactors and catalyst preparation with micrometre resolution but also the possibility to follow structural changes in the sub-100 nm regime. Moreover, the potential of the new synchrotron radiation sources with higher brilliance, recent milestones in focusing of hard X-rays as well as spatiotemporal studies are highlighted. The tutorial review concludes with a view on future developments in the field of X-ray microscopy that will have strong impact on the understanding of catalysts in the future and should be combined with in situ electron microscopic studies on the nanoscale and other spectroscopic studies like microRaman, microIR and microUV-vis on the macroscale.  相似文献   

3.
We investigate the physicomechanical properties of polymeric heterogeneous catalysts of transition‐metal oxides, specifically, the specific surface area, elongation at break, breaking strength, specific electrical resistance, and volume resistivity. Digital microscopy, Fourier‐transform infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, and energy‐dispersive analysis are used to study the surfaces of the catalysts. The experimental results show that polymeric heterogeneous catalysts of transition‐metal oxides exhibit high stability and can maintain their catalytic activity under extreme reaction conditions for longterm use. The oxidation mechanism of sulfur‐containing compounds in the presence of polymeric heterogeneous catalysts of transition‐metal oxides is confirmed. Microstructural characterization of the catalysts is performed by using X‐ray computed tomography. The activity of various catalysts in the oxidation of sulfur‐containing compounds is determined. We demonstrate the potential application of polymeric heterogeneous catalysts of transition‐metal oxides in industrial wastewater treatment.  相似文献   

4.
郑仁垟  谢在库 《催化学报》2021,42(12):2141-2148
可持续发展的化学工业需要新型高效的催化材料和催化过程,尤其需要生态友好、本质安全的新催化过程,其本质是提高合适反应器内催化剂的选择性、活性和稳定性.因此,通过原位技术实时表征反应状态下的催化剂结构并同步测试催化性能,有助于全面研究真实反应条件下催化剂及其表面物种随时间的演变过程,深入理解催化剂构效关系的本质,为开发新一代催化技术提供科学依据.迄今,在实际催化体系中实现催化剂从活化、运行到失活的全生命周期表征仍存在巨大挑战.本文综述了分子筛、金属、金属氧化物三类典型催化剂在甲醇制烯烃、费托合成、丙烷脱氢等催化反应中的全生命周期时空演变,分析了所采用的表征研究策略,以期为新型工业催化的应用基础研究提供启示.据文献报道,甲醇制烯烃反应案例主要利用了原位紫外-可见光谱和固态核磁共振光谱等获得SAPO-34分子筛催化剂从诱导期、自催化期到失活期的表面烃池物种性质和动态演变;费托合成反应案例主要利用了同步辐射X射线衍射计算机断层扫描和X射线吸收光谱等技术研究单个毫米级Co/γ-Al2O3催化剂颗粒在还原条件和费托合成条件下的催化剂结构演变;丙烷脱氢反应案例主要结合原位的紫外-可见和拉曼光纤探头分析了CrOx/Al2O3催化剂在700 ml固定床反应器中不同床层积炭的时空演变.这些研究案例表明,因受限于表征仪器的时空分辨率和适用工况,多数重要的催化反应尚未完全实现工业条件下的全生命周期表征;但通过合理简化非关键变量,可以获得近似工业条件下的多相催化时空演变规律,这些原位表征研究拓展了多相催化的新认识新发现.着眼未来,近似工业反应条件的原位表征、多尺度的原位表征装置设计、反应条件下的计算模拟等策略将在催化研发中发挥重要作用.这些全生命周期表征策略反映了催化研究范式的转变,但将其应用于工业实践仍面临许多科学和工程的挑战.从实际应用角度看,还需综合考虑原位表征技术的成本、安全性和准确性,重视催化剂颗粒及反应器尺度的原位表征,不断推进新型催化剂的研发.  相似文献   

5.
This article is a review of the physical characterization of well-defined site-isolated molecular metal complexes and metal clusters supported on metal oxides and zeolites. These surface species are of interest primarily as catalysts; as a consequence of their relatively uniform structures, they can be characterized much more precisely than traditional supported catalysts. The properties discussed in this review include metal nuclearity, oxidation state, and ligand environment, as well as metal-support interactions. These properties are determined by complementary techniques, including transmission electron microscopy; X-ray absorption, infrared, Raman, and NMR spectroscopies; and density functional theory. The strengths and limitations of these techniques are assessed in the context of results characterizing samples that have been investigated thoroughly and with multiple techniques. The depth of understanding of well-defined metal complexes and metal clusters on supports is approaching that attainable for molecular analogues in solution. The results provide a foundation for understanding the more complex materials that are typical of industrial catalysts.  相似文献   

6.
Clean energy innovation has triggered the development of single-atom catalysts(SACs) due to their excellent catalytic activity, high tunability and low cost. The success of SACs for many catalytic reactions has opened a new field, where the fundamentals of catalytic property-structure relationship at atomic level await exploration, and thus raises challenges for structural characterization. Among the characterization techniques for SACs, aberration-corrected transmission electron microscopy(TEM) has become an essential tool for direct visualization of single atoms. In this review, we briefly summarize recent studies on SACs using advanced TEM. We first introduce TEM methods, which are particularly important for SACs characterization, and then discuss the applications of advanced TEM for SAC characterization, where not only atomic dispersion of single atoms can be studied, but also the distribution of elements and the valence state with local coordination can be resolved. We further extend our review towards in-situ TEM, which has increasing importance for the fundamental understanding of catalytic mechanism. Perspectives of TEM for SACs are finally discussed.  相似文献   

7.
陈莲芬  林怡涵  冯嘉俊  唐青 《化学通报》2021,84(12):1323-1327
作为一类具有大的比表面积、高孔隙率、合成方便、骨架规模可变、化学可修饰以及结构组成多样等优点的新型多孔材料,金属-有机框架(MOFs)在光电材料、药物传输、气体吸附分离及催化等领域有着广阔的应用前景,成为近年来研究的热点。异相催化是MOFs最具发展潜力的应用领域之一,各种表征方法和研究手段是开展MOFs异相催化研究的工作基础。本文主要围绕表征MOFs作为异相催化剂的常用技术手段进行介绍,包括X-射线单晶衍射、X-射线粉末衍射、热重分析、红外光谱/拉曼光谱分析、透射/扫描电镜等,旨在为开展相关MOFs催化研究提供一定参考。  相似文献   

8.
To establish the structure–catalytic property relationships of heterogeneous catalysts, a detailed characterization of the three‐dimensional (3D) distribution of active sites on a single catalyst is essential. Single‐particle catalysis of a modular multilayer catalytic platform that consists of a solid silica core, a mesoporous silica shell, and uniformly distributed Pt nanoparticles sandwiched in between these layers is presented. The first 3D high‐resolution super‐localization imaging of single fluorescent molecules produced at active sites on the core‐shell model nanocatalysts is demonstrated. The 3D mapping is aided by the well‐defined geometry and a correlation study in scanning electron microscopy and total internal reflection fluorescence and scattering microscopy. This approach can be generalized to study other nano‐ and mesoscale structures.  相似文献   

9.
High-performance catalysts are essential for many electrochemical technologies, such as water splitting, fuel cells and electrosynthesis. Understanding the structure–performance correlation of the catalysts demands a real-time characterization of their structural evolutions under work conditions. Herein, we review recent advances in structural dynamics of electrocatalysts during reactions by highlighting the utilization of advanced liquid cell transmission electron microscopy techniques. The processes of corrosion, Ostwald ripening, and particle agglomeration are discussed. By incorporating the synchronous electrochemical measurements in the liquid cell, unique information may be retrieved toward improving the electrocatalytic performance.  相似文献   

10.
The establishment of a molecular view of heterogeneous catalysis has been hampered for a number of reasons. There are, however, recent developments, which show that we are now on the way towards reaching a molecular-scale picture of the way solids work as catalysts. By a combination of new theoretical methods, detailed experiments on model systems, and synthesis and in situ characterization of nano-structured catalysts, we are witnessing the first examples of complete atomic-scale insight into the structure and mechanism of surface-catalyzed reactions. This insight has already proven its value by enabling a rational design of new catalysts. We illustrate this important development in heterogeneous catalysis by highlighting recent examples of catalyst systems for which it has been possible to achieve such a detailed understanding. In particular, we emphasize examples where this progress has made it possible to propose entirely new catalysts, which have then been proven experimentally to exhibit improved performance in terms of catalytic activity or selectivity.  相似文献   

11.
Scanning electron microscopy characterization of the materials obtained by homogeneous and heterogeneous catalytic polymerization of phenylacetylene is described. The catalysts used are β‐dioxygenato rhodium(I) complexes. The effects of the reaction medium, presence of a cocatalyst and the type of catalysis (homogeneous or heterogeneous) on the morphology of the polymers obtained have been studied and discussed. Using a supported complex at 0 °C, nanoparticles with a diameter distribution as narrow as 30 to 70 nm were obtained. Polymer nanopowders were found to be unaffected by ageing. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
The material and pressure gap has been a long standing challenge in the field of heterogeneous catalysis and have transformed surface science and biointerfacial research. In heterogeneous catalysis, the material gap refers to the discontinuity between well-characterized model systems and industrially relevant catalysts. Single crystal metal surfaces have been useful model systems to elucidate the role of surface defects and the mobility of reaction intermediates in catalytic reactivity and selectivity. As nanoscience advances, we have developed nanoparticle catalysts with lithographic techniques and colloidal syntheses. Nanoparticle catalysts on oxide supports allow us to investigate several important ingredients of heterogeneous catalysis such as the metal-oxide interface and the influence of noble metal particle size and surface structure on catalytic selectivity. Monodispersed nanoparticle and nanowire arrays were fabricated for use as model catalysts by lithographic techniques. Platinum and rhodium nanoparticles in the 1-10 nm range were synthesized in colloidal solutions in the presence of polymer capping agents. The most catalytically active systems are employed at high pressure or at solid-liquid interfaces. In order to study the high pressure and liquid interfaces on the molecular level, experimental techniques with which we bridged the pressure gap in catalysis have been developed. These techniques include the ultrahigh vacuum system equipped with high pressure reaction cell, high pressure Sum Frequency Generation (SFG) vibration spectroscopy, High Pressure Scanning Tunneling Microscopy (HP-STM), and High Pressure X-ray Photoemission Spectroscopy (HP-XPS), and Quartz Crystal Microbalance (QCM). In this article, we overview the development of experimental techniques and evolution of the model systems for the research of heterogeneous catalysis and biointerfacial studies that can shed light on the long-standing issues of materials and pressure gaps.  相似文献   

13.
Mingshu CHEN 《物理化学学报》2017,33(12):2424-2437
明确催化剂的活性位本质和构建多相催化的结构和反应性能之间的准确关系是催化基础研究的重点,表面科学研究基于丰富的表征测试手段能够较好地在分子原子水平测定表面结构以明确催化剂活性位本质,并通过高压原位反应池测定相关催化反应性能,获得较可靠的催化剂构效关系。本文简要总结了近年来本人参与的几个模型催化研究例子,包括贵金属表面上CO和烷烃催化氧化的活性表面、纳米Au膜的制备和CO氧化的催化活性位、VO_x/Pt(111)上丙烷氧化的协同作用、Au Pd合金上醋酸乙烯酯合成Au的助催化作用、模型氧化物上纳米Pt的庚烷脱氢环化制甲苯的粒径关系等,以及相关模型催化研究技术的进展。  相似文献   

14.
The understanding of selectivity in heterogeneous catalysis is of paramount importance to our society today. In this review we outline the current state of the art in research on selectivity in heterogeneous catalysis. Current in-situ surface science techniques have revealed several important features of catalytic selectivity. Sum frequency generation vibrational spectroscopy has shown us the importance of understanding the reaction intermediates and mechanism of a heterogeneous reaction, and can readily yield information as to the effect of temperature, pressure, catalyst geometry, surface promoters, and catalyst composition on the reaction mechanism. DFT calculations are quickly approaching the ability to assist in the interpretation of observed surface spectra, thereby making surface spectroscopy an even more powerful tool. HP-STM has revealed three vitally important parameters in heterogeneous selectivity: adsorbate mobility, catalyst mobility and selective site-blocking. The development of size controlled nanoparticles from 0.8 to 10 nm, of controlled shape, and of controlled bimetallic composition has revealed several important variables for catalytic selectivity. Lastly, DFT calculations may be paving the way to guiding the composition choice for multi-metallic heterogeneous catalysis for the intelligent design of catalysts incorporating the many factors of selectivity we have learned.  相似文献   

15.
过去十年见证了单原子催化领域的快速发展,其最高的原子利用效率和充分暴露的活性位点使得单原子催化剂对众多反应的催化活性具有显著提升。在单原子催化领域的早期发展阶段,研究者只是关注单原子催化剂催化活性与催化选择性的提高,而其内在的反应机理以及活性位点同催化性能之间的构效关系往往被忽视。关于单原子催化剂中金属-基底相互作用的深入探讨能够帮助我们理解催化机理,并进一步指导多相催化剂的理性设计。值得注意的是,由于单原子催化剂均一的活性位点及其几何构型,我们可以通过理论计算以及一些原位的表征技术,来揭示其中的金属-基底相互作用,继而进一步促进单原子催化领域的发展以及多相催化剂的理性设计。这篇综述总结了金属-基底相互作用的基本概念,其作用,以及其在一些重要多相催化中的应用,最后提出了金属-基底相互作用在单原子催化领域所面临的挑战与机遇。  相似文献   

16.
Enantioselective synthesis of organic compounds has been studied by homogeneous catalysts for several years. However, these catalysts have yet to make a significant impact on industrial scales for fine chemical synthesis. A primary reason is the designing of a homogeneous asymmetric catalyst, which requires relatively bulky ligands and catalyst recovery and recycling often causes problems. One of the convincing ways to overcome this problem is to immobilise the asymmetric catalyst onto a solid support and the resulting heterogeneous asymmetric catalyst system can, in principle, be readily re-used. A large number of supports such as inorganic oxides including zeolites, alumina, zirconia, silica and organic polymers have been employed as supports in heterogeneous asymmetric catalysis. Therefore, in this review article we have summarized the work done by us in our laboratory on the immobilization of chiral transition metal complexes such as Ru, Ir, Mn and Ti onto ordered mesoporous silica and its asymmetric catalysis. All these immobilized catalysts were well characterized by different physicochemical techniques to confirm the structural retention of the support as well as the active metal complex after immobilization. This report includes our asymmetric catalytic investigations in enantioselective reactions such as hydrogenation of ketones, olefins, oxidation of sulfides and oxidative kinetic resolution of alcohols and sulfoxides through immobilized heterogeneous catalyst systems.  相似文献   

17.
Rapid developments in the field of catalysis are leading to an increased demand for tailor-made catalysts. Water-soluble complex catalysts, which are being intensively investigated at the present time, combine the advantages of homogeneous and heterogeneous catalysis: simple and complete separation of the product from the catalyst, high activity, and high selectivity. From the large number of available water-soluble ligands, the appropriate catalysts can be developed for many reactions. The industrial applications in the fields of hydrogenation and hydroformylation have already indicated the wide scope of this type of catalyst. In addition, the annual production of 300 000 tons of butyraldehyde through application of water-soluble rhodium complexes at Hoechst AG in Oberhausen, Germany, has demonstrated the industrial importance of the concept of complex-catalyzed reactions in aqueous two-phase systems. The efficient operation of catalytic processes increasingly requires the loss-free recycling of the noble metal catalyst, and this can be simply and economically realized in two-phase systems. Special applications in biochemical problems open up developments in the field of water-soluble transition metal complexes that far transcend the familiar kinds of homogeneous catalysis. In the near future, the investigation and application of metal complex catalysts that are compatible with the physiological, cheap, and environmentally friendly solvent, water, is likely to become a high priority in catalysis research.  相似文献   

18.
多相催化技术在化工产业中一直发挥着重要作用,近年来也被广泛应用于燃料电池、绿色化学、纳米技术、生物技术等新兴领域.其中,金属催化剂在加氢、氧化、氢甲酰化、偶联等多种反应中表现出较高的催化效率.然而社会发展对金属催化剂的效率提出了更高的要求,针对特定反应,开发兼具高活性、高选择性和优良稳定性的理想催化剂一直是学术界和工业...  相似文献   

19.
Surface organometallic chemistry is an area of heterogeneous catalysis which has recently emerged as a result of a comparative analysis of homogeneous and heterogeneous catalysis. The chemical industry has often favored heterogeneous catalysis, but the development of better catalysts has been hindered by the presence of numerous kinds of active sites and also by the low concentration of active sites. These factors have precluded a rational improvement of these systems, hence the empirical nature of heterogeneous catalysis. Catalysis is primarily a molecular phenomenon, and it must involve well-defined surface organometallic intermediates and/or transition states. Thus, one must be able to construct a well-defined active site, test its catalytic performance, and assess a structure-activity relationship, which will be used, in turn-as in homogeneous catalysis-to design better catalysts.By the transfer of the concepts and tools of molecular organometallic chemistry to surfaces, surface organometallic chemistry can generate well-defined surface species by understanding the reaction of organometallic complexes with the support, which can be considered as a rigid ligand. This new approach to heterogeneous catalysis can bring molecular insight to the design of new catalysts and even allow the discovery of new reactions (Ziegler-Natta depolymerization and alkane metathesis). After more than a century of existence, heterogeneous catalysis can still be improved and will play a crucial role in solving current problems. It offers an answer to economical and environmental problems faced by industry in the production of molecules (agrochemicals, petrochemicals, pharmaceuticals, polymers, basic chemicals).  相似文献   

20.
Surface processes such as metal oxidation and metal oxide growth invariably influence the physical and chemical properties of materials and determine their interaction with their surroundings and hence their functionality in many technical applications. On a fundamental level, these processes are found to be governed by a complex interplay of thermodynamic variables and kinetic constraints, resulting in a rich variety of material-specific phenomena. In this review article, we discuss recent results and insights on transition metal oxidation and rare-earth oxide growth acquired by low-energy electron microscopy and related techniques. We demonstrate that the use of in situ surface sensitive methods is a prerequisite to gaining a deeper understanding of the underlying concepts and the mechanisms responsible for the emerging oxide structure and morphology. Furthermore, examples will be provided on how structural and chemical modifications of the oxide films and nanostructures can be followed in real-time and analyzed in terms of local reactivity and cooperative effects relevant for heterogeneous model catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号