首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
A new three-component catalytic system, PdCl2/phen/M(CF3SO3)n, was studied in the copolymerization of dicyclopentadiene (DCPD) with CO. It was found that the PdCl2/phen/CF3SO3H catalytic system gave a very low catalytic activity, and the PdCl2/phen/M(CF3SO3)n catalytic system exhibited high activity when M(CF3SO3)n was introduced instead of CF3SO3H. The resultant cooligomer was analyzed using various techniques such as FT-IR, 1H NMR, 13C NMR, DSC and TGA. The results indicated that the copolymer was a polyspiroketal (PS) of CO and DCPD. Due to the tension of the ring of DCPD, the degree of copolymerization is low and the degree of crystallinity is also not high. The effects of ligands, M(CF3SO3)n, solvents, 1,4-benzoquinone/PdCl2 molar ratio, and temperatures on the copolymerization have been discussed in detail. The results showed that this novel catalytic system exhibited highly efficient activity, especially when 1,10-phenanthroline (phen) was used as ligand and Cu(CF3SO3)2 was used as cocatalyst. The corresponding reaction rate was 49 000 g PS/molPd h when the reaction was carried out at 60 °C and 3.0 MPa of CO. The weight average molecular weight (Mw) and the number average molecular weight (Mn) of the resultant cooligomer were 1180 g/mol and 564 g/mol, respectively.  相似文献   

2.
Electrocatalytic oxygen reduction was studied on a RuxFeySez(CO)n cluster catalyst with Vulcan carbon powder dispersed into a Nafion film coated on a glassy carbon electrode. The synthesis of the electrocatalyst as a mixture of crystallites and amorphous nanoparticles was carried out by refluxing the transition metal carbonyl compounds in an organic solvent. Electrocatalysis by the cluster compound is discussed, based on the results of rotating disc electrode measurements in a 0.5 M H2SO4. A Tafel slope of −80.00±4.72 mV dec−1 and an exchange current density of 1.1±0.17×10−6 mA cm−2 was calculated from the mass transfer-corrected curve. It was found that the electrochemical reduction reaction follows the kinetics of a multielectronic (n=4e) charge transfer process producing water, i.e. O2+4H++4e→2H2O. Electronic Publication  相似文献   

3.
Vinyl‐type copolymerization of norbornene (NBE) and 5‐NBE‐2‐yl‐acetate (NBE‐OCOMe) in toluene were investigated using a novel homogeneous catalyst system based on bis(β‐ketonaphthylamino)Ni(II)/B(C6F5)3/AlEt3. The copolymerization behavior as well as the copolymerization conditions, such as the levels of B(C6F5)3 and AlEt3, temperature, and monomer feed ratios, which influence on the copolymerization were examined. Without combination of AlEt3, the catalytic bis(β‐ketonaphthylamino)Ni(II)/B(C6F5)3 exhibited very high catalyst activity for polymerization of NBE. Combination of AlEt3 in catalyst system resulted in low conversion for polymerization of NBE. For copolymerization of NBE and NBE‐OCOMe, involvement of AlEt3 in catalyst is necessary. Slight addition of NBE‐OCOMe in copolymerization of NBE and NBE‐OCOMe gives rise to significant increase of catalyst activity for catalytic system bis(β‐ketonaphthylamino)Ni(II)/B(C6F5)3/AlEt3. Nevertheless, excess increase of the NBE‐OCOMe content in the comonomer feed ratios results in decrease of conversion as well as activity of catalyst. The achieved copolymers were confirmed to be vinyl‐addition copolymers through the analysis of FTIR, 1H NMR, and 13C NMR spectra. 13C NMR studies further revealed the composition of the copolymer and the incorporation rate was 7.6–54.1 mol % ester units at a content of 30–90 mol % of the NBE‐OCOMe in the monomer feeds ratios. TGA analysis results showed that the copolymer exhibited good thermal stability (Td > 410 °C) and failed to observe the glass transitions temperature over 300 °C. The copolymers are confirmed to be noncrystalline by WAXD analysis results and show good solubility in common organic solvents. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3990–4000, 2009  相似文献   

4.
The rate constants of the reactions of the chlorine atom with C3F7I (k 1) and CF3I (k 2) have been measured using the resonance fluorescence of chlorine atoms in a flow reactor at 295 K: k 1 = (5.2 ± 0.3) × 10−12 cm3 molecule−1 s−1 and k 2 = (7.4 ± 0.6) × 10−13 cm3 molecule−1 s−1. No iodine atoms have been detected in the reaction products.  相似文献   

5.
The influence of the SO42− ion on the temperature and concentration dependences of electric conductivity and the structure of sodium phosphate oxide glasses was studied. The increased electric conductivity of sulfate-phosphate glasses was explained by the formation of mixed sulfate-phosphate fragments with terminal SO42− ions in the structure of glasses in the Na2SO4-NaPO3 system. The dissociation energies of the sodium sulfate fragments are lower than those of pure oxide sodium phosphate structural units. As a result, the number of dissociated sodium ions increases, the activation energy of electric conductivity falls, and the conductivity (at 25°C) increases approximately 270-fold relative to the conductivity of NaPO3. The arrangement of SO42− ions in the structure was evaluated from the IR spectra of the glasses.  相似文献   

6.
It was found that carboxylation of norbornene (nbn) in the presence of the PdCl2−PPh3−HCl catalytic system is accompanied by alternating copolymerization ofnbn with carbon monoxide to form norbornanecarboxylic acid (yield ∼20%) and anbn-CO copolymer (yield ∼80%,M w=1600,M w/M n=1.6). The PdII salt of poly(norbornaneketone)carboxylic acid is a highly active catalyst for the carbomethoxylation of propylene. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 368–370, February, 1998.  相似文献   

7.
From recent rate constant data for the recombination reaction 2CF3 → C2F6 ($ k_{(CF_3 )_2 }^M $ k_{(CF_3 )_2 }^M ) in the high-pressure limit and from experimental data obtained at intermediate pressures of buffer gases M (M = He, Ar, N2, CF3I), analytical expressions for $ k_{(CF_3 )_2 }^M $ k_{(CF_3 )_2 }^M (in Lindemann’s formulation) are derived for the temperature range of 300–1300 K and intermediate pressures of the buffer gases.  相似文献   

8.
In this paper, we investigated three ligand systems, symmetric and asymmetric pyridyl-containing tridentate ligands (L1NH2 = (bis(2-pyridylmethyl)-amino)-ethylamine, L2H = (bis(2-pyridylmethyl)-amino)-acetic acid, L3NH2 = [(6-amino-hexyl)-pyridyl-2-methyl-amino]-acetic acid) as bifunctional chelating agents for labeling biomolecules. These ligands reacted with the precursor fac-[188Re(CO)3(H2O)3]+ and yielded the radioactive complexes fac-[188Re(CO)3L] (L = three ligands), which were identified by RP-HPLC. The corresponding stable rhenium tricarbonyl complexes (1–3) were allowed for macroscopic identification of the radiochemical compounds. 188Re tricarbonyl complexes, with log P o/w values ranging from −1.36 to −0.32, were obtained with yields of ≥90% using ligand concentrations within the 10−6−10−4M range. Challenge studies with cysteine and histidine revealed the high stability properties of these radioactive complexes, and biodistribution studies in normal mice indicated a fast rate of blood clearance and high rate of total radioactivity excretion, primarily through the renal-urinary pathway. In summary, these asymmetric and symmetric pyridyl-containing tridentate ligands are potent bifunctional chelators for the future biomolecules labeling of fac-[188Re(CO)3(H2O)3]+.  相似文献   

9.
Chemical equilibria in the high-molecular-weight heparin (Na4hep)-arginine (HArg)-H2O-NaCl and MCl2-Na4hep-HArg-H2O-NaCl systems of electrolytes (M = Ca2+, Mg2+) were calculated by the method of mathematical simulation of chemical equilibria from representative planned pH-metric titration experiment at 2.30 ≤ pH ≤ 10.50 in a physiological solution medium in the presence of 0.154 M NaCl as a background electrolyte at 37°C. The initial concentrations of the basic components were n × 10−3 M (n ≤ 4).  相似文献   

10.
The areas of the fusion and crystallization peaks of Na3FeF6 and of four calibration substances (KCl, NaCl, Na2SO4, and K2SO4) were measured using the DSC mode of a high-temperature calorimeter. Using the measured quantities and known values of the enthalpy of fusion of the calibration substances, the enthalpy of fusion of Na3FeF6 was determined. Its value at the temperature of fusion 1224 K was 70 ± 4 kJ mol−1.  相似文献   

11.
The kinetics of Ru[(NH3)6]3+ reduction in 1 M NaNO3 solution at Ag(210) and Ag(111) singlecrystal electrodes modified by n-decanthiol monolayer is studied by electrochemical impedance spectroscopy and cyclic voltammetry. By using these two methods, standard rate constants of the redox reaction involving Ru[(NH3)6]3+/2+ redox couple in the absence and in the presence of the n-decanthiol film were estimated. The equivalent circuit describing the experimental data in the presence of the self-assembled organic monolayer and in the absence of redox reaction is an electrical circuit comprising a large resistance (∼106 Ω) connected in parallel with a capacitance (∼10−8 F). Analysis of kinetic data and extrapolation of Tafel lines resulted in the determination of the rate constant at unmodified Ag-electrode, which is characteristic of very fast heterogeneous electron transfer. The calculated rate constants for n-decanthiol-modified silver singlecrystal faces (210) and (111) in 1 M NaNO3 solution (pH 6.3) equal 4.63 × 10−5 and 3.05 × 10−5 cm/s, respectively. The results are compared with the data at hand reported by different authors for gold electrodes in indifferent electrolyte solution in the absence and in the presence of self-assembled monolayer.  相似文献   

12.
The reaction of Ru3(CO)12 with 2(diphenylphosphino)ethyl-triethoxysilane (DPTS) in hydrocarbons, leads to the functionalized Ru3(CO)12−n [Ph2P(CH2)2Si(OEt3)] n (n = 1,2) complexes. The complex with two phosphine substituents was chemically anchored on mesoporous silicas, SBA-15 and MCM-41, in order to obtain two hybrid materials characterized by a different localization of the metal centre on the surface of the porous supports. A detailed investigation of the cluster, before and after chemical anchoring on the mesoporous silicas, was pursued. Particular attention was also devoted to the study of the morphological, structural and textural properties of the metal-functionalised silicas (Ru/SBA-15 and Ru/MCM-41) by infrared spectroscopy (FT-IR), scanning electron microscopy, X-ray diffraction and N2 physisorption analysis.  相似文献   

13.
Gas-phase infrared photodissociation spectroscopy is reported for the microsolvated [Mn(ClO4)(H2O) n ]+ and [Mn2(ClO4)3(H2O) n ]+ complexes from n = 2 to 5. Electrosprayed ions are isolated in an ion-trap where they are photodissociated. The 2600–3800 cm−1 spectral region associated with the OH stretching mode is scanned with a relatively low-power infrared table-top laser, which is used in combination with a CO2 laser to enhance the photofragmentation yield of these strongly bound ions. Hydrogen bonding is evidenced by a relatively broad band red-shifted from the free OH region. Band assignment based on quantum chemical calculations suggest that there is formation of water—perchlorate hydrogen bond within the first coordination shell of high-spin Mn(II). Although the observed spectral features are also compatible with the formation of structures with double-acceptor water in the second shell, these structures are found relatively high in energy compared with structures with all water directly bound to manganese. Using the highly intense IR beam of the free electron laser CLIO in the 800–1700 cm−1, we were also able to characterize the coordination mode (η2) of perchlorate for two clusters. The comparison of experimental and calculated spectra suggests that the perchlorate Cl—O stretches are unexpectedly underestimated at the B3LYP level, while they are correctly described at the MP2 level allowing for spectral assignment.  相似文献   

14.
Methods were developed for the controlled thermal synthesis of high-spin cubane-like pivalates {MII 43−OR)4} (M = Co or Ni; R = H or Me) starting from mono-and polynuclear complexes. The solid-state thermal decomposition of the known pivalate clusters [MII 43−OMe)4−(μ2−OOCBut)22−OOCBut)2(MeOH)4] and the new clusters [M4II3)−OH41−OOCBut)3−(μ−(NH2)2C6H2Me2)31−(NH2)2C6H2Me2)3]+(OOCBut)− (M = Co or Ni) was studied by differential scanning calorimetry and thermogravimetry. The thermolysis of cubane-like CoII and NiII pivalates is a destructive process. The phase composition of the decomposition products is determined by the nature of coordinated ligands and the structural features of the metal core.  相似文献   

15.
The compound [Ni(NH3)6][VO(O2)2(NH3)]2 was prepared and characterized by elemental analysis and vibrational spectra. The single crystal X-ray study revealed that the structure consists of [Ni(NH3)6]2+ and [VO(O2)2(NH3)] ions. As a result of weak interionic interactions V′···Op (Op-peroxo oxygen), ([VO(O2)2(NH3)])2 dimers are formed in the solid-state. The thermal decomposition of [Ni(NH3)6][VO(O2)2(NH3)]2 is a multi-step process with overlapped individual steps; no defined intermediates were obtained. The final solid products of thermal decomposition up to 600°C were Ni2V2O7 and V2O5.  相似文献   

16.
The efflorescence and deliquescence processes of Mg(NO3)2 aerosol particles deposited on ZnSe substrate have been investigated through in situ Fourier transform infrared-attenuated total reflection (FTIR-ATR) technique at the molecular level. At relative humidity (RH) of ∼3%, Mg(NO3)2 particles existed as amorphous states. The amorphous Mg(NO3)2 particles were transformed into crystalline Mg(NO3)2 · nH2O (n ≤ 5) with slight increasing of RH. Thermodynamically stable Mg(NO3)2·6H2O crystals were gradually formed on the particle surface and started to be dissolved at the saturation point (∼53% RH). At the same time, a continuous phase transition from Mg(NO3)2 · nH2O (n≤5) to Mg(NO3)2·6H2O occurred on the particle surface. This led the solid particles to completely deliquesce at 76% RH, which was much higher than the saturation point of 53% RH. In the efflorescence process, Mg(NO3)2 droplets entered into the supersaturated region due to the gradual evaporation of water. Finally, amorphous particles were formed when RH decreased below 5%. In the FTIR-ATR spectra of the supersaturated Mg(NO3)2 droplets, the absorbance of the symmetric stretching vibration of NO 3 (v 1- NO 3 ) clearly became stronger. It resulted from the continuous formation of solvent share ion pairs (SIPs), and even the contact ion pairs (CIPs) between Mg2+ and NO 3 . Supported by the Trans-Century Program Foundation for the Talents by the Ministry of Education of China, the National Natural Science Foundation of China (Grant Nos. 20073004, 20473012, and 20673010), the 111 Project (B07012), and the State Key Laboratory of Physical Chemistry for Solid Surface of Xiamen University  相似文献   

17.
Summary.  Calcium sulfate occurs in nature in form of three different minerals distinguished by the degree of hydration: gypsum (CaSO4·2H2O), hemihydrate (CaSO4·0.5H2O) and anhydrite (CaSO4). On the one hand the conversion of these phases into each other takes place in nature and on the other hand it represents the basis of gypsum-based building materials. The present paper reviews available phase diagram and crystallization kinetics information on the formation of calcium sulfate phases, including CaSO4-based double salts and solid solutions. Uncertainties in the solubility diagram CaSO4–H2O due to slow crystallization kinetics particularly of anhydrite cause uncertainties in the stable branch of crystallization. Despite several attempts to fix the transition temperatures of gypsum–anhydrite and gypsum–hemihydrate by especially designed experiments or thermodynamic data analysis, they still vary within a range from 42–60°C and 80–110°C. Electrolyte solutions decrease the transition temperatures in dependence on water activity. Dry or wet dehydration of gypsum yields hemihydrates (α-, β-) with different thermal and re-hydration behaviour, the reason of which is still unclear. However, crystal morphology has a strong influence. Gypsum forms solid solutions by incorporating the ions HPO4 2−, HAsO4 2−, SeO4 2−, CrO4 2−, as well as ion combinations Na+(H2PO4) and Ln3+(PO4)3−. The channel structure of calcium sulfate hemihydrate allows for more flexible ion substitutions. Its ion substituted phases and certain double salts of calcium sulfate seem to play an important role as intermediates in the conversion kinetics of gypsum into anhydrite or other anhydrous double salts in aqueous solutions. The same is true for the opposite process of anhydrite hydration to gypsum. Knowledge about stability ranges (temperature, composition) of double salts with alkaline and alkaline earth sulfates (esp. Na2SO4, K2SO4, MgSO4, SrSO4) under anhydrous and aqueous conditions is still very incomplete, despite some progress made for the systems Na2SO4–CaSO4 and K2SO4–CaSO4–H2O. Corresponding author. E-mail: daniela.freyer@chemie.tu-freiberg.de Received December 17, 2002; accepted January 10, 2003 Published online April 3, 2003  相似文献   

18.
Liquid-phase reduction NO 3 using monometallic and bimetallic catalysts (5% Rh/Al2O3, 5% Rh-0.5% Cu/Al2O3, 5% Rh-1.5% Cu/Al2O3, 5% Rh-5% Cu/Al2O3 and a physical mixture of 5% Rh/Al2O3 and 1.5% Cu/Al2O3) was studied in a slurry reactor operating at atmospheric pressure. Kinetic measurements were performed for a low concentration of nitrate (0.4 × 10−3−3.2 × 10−3 mol dm−3) and the temperature range 293–313 K. From the experimental data, it was found that the reduction of nitrate is first order with respect to nitrate. On the basis of the rate constants, the apparent activation energy was established using a graphic method. Published in Russian in Kinetika i Kataliz, 2007, Vol. 48, No. 6, pp. 881–886. This article was submitted by the authors in English.  相似文献   

19.
The development of an accurate aqueous thermodynamic model is described for oxalate species in the Na—Ba—Ca—Mn—Sr—Cl—NO3—PO4—SO4—H2O system at 25 °C. The model is valid to high ionic strength (as high as 10 mol·kg−1) and from very acid (10 mol·kg−1 H2SO4) to neutral and basic conditions. The model is based upon the equations of Pitzer and co-workers. The necessary ion-interaction parameters are determined by comparison with experimental data taken from the literature or determined in this study. The proposed aqueous activity and solubility model is valid for a range of applications from interpretation of studies on mineral dissolution at circumneutral pH to the dissolution of high-level waste tank sludges under acidic conditions.  相似文献   

20.
Reaction of [Ru6C(CO)16]2− with an excess of AgX (X = Cl, Br or I) affords heteronuclear clusters of formula [{Ru6C(CO)16Ag2X}2]2− in 80% yield, which for X = I and X = Br/Cl were crystallographically characterised. The formation of the cluster was followed in solution using electrospray ionisation mass spectrometry (ESI-MS), which revealed the presence of a wide range of clusters with the general formula [{Ru6C(CO)16} x Ag y X z ](2x−y+z)− where x = 1 or 2, y = 1, 2, 3 or 4 and z = 0, 1 or 2. The high yield of the product despite the evident complicated solution speciation is attributed to selective crystallisation of the observed compound driving the equilibrium toward this product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号