首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Therapeutic bifunctional alkylating agents generate interstrand cross-links in duplex DNA. As part of our continuing studies on DNA duplexes that contain alkyl interstrand cross-links, we have synthesized a cross-link that bridges the N(3) positions of a mismatched thymidine base pair. This cross-link, which is similar to the N(3)C-alkyl-N(3)C cross-link that has been observed between mismatched cytosine base pairs, was introduced by first incorporating a cross-linked phosphoramidite unit at the 5'-end of an oligonucleotide chain. Fully cross-linked duplexes were then synthesized using an orthogonal approach to selectively remove protecting groups, thus allowing construction of the cross-linked duplex via conventional solid-phase oligonucleotide synthesis. Short DNA duplexes with alkyl cross-links of various lengths (two, four, and seven methylene units) were prepared, and their physical properties were studied via UV thermal denaturation and circular dichroism spectroscopy. These linkers were found to stabilize the duplexes by 37, 31, and 16 degrees C for the two-, four-, and seven-carbon linkers, respectively, relative to a non-cross-linked duplex. Circular dichroism spectra suggested that these lesions induce very little deviation in the global structure relative to the non-cross-linked duplex DNA control. Molecular models show that the two-carbon cross-link spans the distance between the N(3) atoms of the T-T mismatch without perturbing the helix structure, whereas the longer linkers, particularly the seven-carbon linker, tend to push the thymines apart, creating a local distortion. This perturbation may account for the lower thermal stability of the seven-carbon versus two-carbon cross-linked duplex.  相似文献   

2.
Oligonucleotides containing a furan modified internal nucleoside have been synthesized; selective in situ oxidation of the furan moiety to a reactive enal species in the presence of a complementary DNA strand gives rise to fast and efficient formation of an interstrand cross-link.  相似文献   

3.
Oligodeoxynucleotides incorporating a reactive functionality can cause irreversible cross-linking to the target sequence and have been widely studied for their potential in inhibition of gene expression or development of diagnostic probes for gene analysis. Reactive oligonucleotides further show potential in a supramolecular context for the construction of nanometer-sized DNA-based objects. Inspired by the cytochrome P450 catalyzed transformation of furan into a reactive enal species, we recently introduced a furan-oxidation-based methodology for cross-linking of nucleic acids. Previous experiments using a simple acyclic building block equipped with a furan moiety for incorporation into oligodeoxynucleotides have shown that cross-linking occurs in a very fast and efficient way and that substantial amounts of stable, site-selectively cross-linked species can be isolated. Given the destabilization of duplexes observed upon introduction of the initially designed furan-modified building block into DNA duplexes, we explore here the potential benefits of two new building blocks featuring an extended aromatic system and a restored cyclic backbone. Thorough experimental analysis of cross-linking reactions in a series of contexts, combined with theoretical calculations, permit structural characterization of the formed species and allow assessment of the origin of the enhanced cross-link selectivity. Our experiments clearly show that the modular nature of the furan-modified building blocks used in the current cross-linking strategy allow for fine tuning of both yield and selectivity of the interstrand cross-linking reaction.  相似文献   

4.
Short DNA duplexes containing an N(4)C-ethyl-N(4)C interstrand cross-link, C-C, were synthesized on controlled pore glass supports. Duplexes having two, three, or four A/T base pairs on either side of the C-C cross-link and terminating with a C(4) overhang at their 5'-ends were prepared. The cross-link was introduced using a convertible nucleoside approach. Thus, an oligonucleotide terminating at its 5'-end with O(4)-triazoyl-2'-deoxyuridine was first prepared on the support. The triazole group of support-bound oligomer was displaced by the aminoethyl group of 5'-dimethoxytrityl-3'-O-tert-butyldimethylsilyl-N(4)-(2-aminoethyl)deoxycytidine to give the cross-link. The dimethoxytrityl group was removed, and the upper and lower strands of the duplex were extended from two 5'-hydroxyl groups of the cross-link using protected nucleoside 3'-phosphoramidites. The tert-butyldimethylsilyl group of the resulting partial duplex was then removed, and the chain was extended in the 3'-direction from the resulting 3'-hydroxyl of the cross-link using protected nucleoside 5'-phosphoramidites. The cross-linked duplexes were purified by HPLC and characterized by enzymatic digestion and MALDI-TOF mass spectrometry. Duplexes with three or four A/T base pairs on either side of the C-C cross-link gave sigmoidal shaped A(260) profiles when heated, a behavior consistent with cooperative denaturation of the A/T base pairs. Each cross-linked duplex could be ligated to an acceptor duplex using T4 DNA ligase, a result that suggests that the C-C cross-link does not interfere with the ligation reaction, even when it is located only two base pairs from the site of ligation. The ability to synthesize duplexes with a defined interstrand cross-link and to incorporate these duplexes into longer pieces of DNA should enable preparation of substrates that can be used for a variety of biophysical and biochemical experiments, including studies of DNA repair.  相似文献   

5.
The C4'-oxidized abasic site (C4-AP) is produced in DNA as a result of oxidative stress. A recent report suggests that this lesion forms interstrand cross-links. Using duplexes in which C4-AP is produced from a synthetic precursor, we show that the lesion produces interstrand cross-links in which both strands are in tact and cross-links in which the C4-AP containing strand is cleaved. The yields of these products are dependent upon the surrounding nucleotide sequence. When C4-AP is opposed by dA, cross-link formation occurs exclusively with an adjacent dA on the 5'-side. Moreover, formation of the lower molecular weight cross-link is promoted by an opposing adenine. When the opposing dA is replaced by dT, the activity of the adenine can be rescued by adding the free base. This is a rare example in which DNA promotes its own modification, an observation that is all the more important because of the biological significance of the product produced.  相似文献   

6.
The interstrand N2,N2-dG DNA cross-linking chemistry of the acrolein-derived gamma-OH-1,N2-propanodeoxyguanosine (gamma-OH-PdG) adduct in the 5'-CpG-3' sequence was monitored within a dodecamer duplex by NMR spectroscopy, in situ, using a series of site-specific 13C- and 15N-edited experiments. At equilibrium 40% of the DNA was cross-linked, with the carbinolamine form of the cross-link predominating. The cross-link existed in equilibrium with the non-crosslinked N2-(3-oxo-propyl)-dG aldehyde and its geminal diol hydrate. The ratio of aldehyde/diol increased at higher temperatures. The 1,N2-dG cyclic adduct was not detected. Molecular modeling suggested that the carbinolamine linkage should be capable of maintaining Watson-Crick hydrogen bonding at both of the tandem C x G base pairs. In contrast, dehydration of the carbinolamine cross-link to an imine (Schiff base) cross-link, or cyclization of the latter to form a pyrimidopurinone cross-link, was predicted to require disruption of Watson-Crick hydrogen bonding at one or both of the tandem cross-linked C x G base pairs. When the gamma-OH-PdG adduct contained within the 5'-CpG-3' sequence was instead annealed into duplex DNA opposite T, a mixture of the 1,N2-dG cyclic adduct, the aldehyde, and the diol, but no cross-link, was observed. With this mismatched duplex, reaction with the tetrapeptide KWKK formed DNA-peptide cross-links efficiently. When annealed opposite dA, gamma-OH-PdG remained as the 1,N2-dG cyclic adduct although transient epimerization was detected by trapping with the peptide KWKK. The results provide a rationale for the stability of interstrand cross-links formed by acrolein and perhaps other alpha,beta-unsaturated aldehydes. These sequence-specific carbinolamine cross-links are anticipated to interfere with DNA replication and contribute to acrolein-mediated genotoxicity.  相似文献   

7.
Malondialdehyde interstrand cross-links in DNA show strong preference for 5'-d(CpG) sequences. The cross-links are unstable and a trimethylene cross-link has been used as a surrogate for structural studies. A previous structural study of the 5'-d(CpG) cross-link in the sequence 5'-d(AGGCGCCT), where G is the modified nucleotide, by NMR spectroscopy and molecular dynamics using a simulated annealing protocol showed the guanine residues and the tether lay approximately in a plane such that the trimethylene tether and probably the malondialdehyde tether, as well, could be accommodated without major disruptions of duplex structure [Dooley et al. J. Am Chem. Soc. 2001, 123, 1730-1739]. The trimethylene cross-link has now been studied in a GpC motif using the reverse sequence. The structure lacks the planarity seen with the 5'-d(CpG) sequence and is skewed about the trimethylene cross-link. Melting studies indicate that the trimethylene cross-link is thermodynamically less stable in the GpC motif than in the 5-d(CpG). Furthermore, lack of planarity of the GpC cross-link precludes making an isosteric replacement of the trimethylene tether by malondialdehyde. A similar argument can be used to explain the 5'-d(CpG) preference for interchain cross-linking by acrolein.  相似文献   

8.
Anthraquinone (AQ) has been extensively used as a photosensitizer to study charge transfer in DNA. Near-UV photolysis of AQ induces electron abstraction in oligonucleotides leading to AQ radical anions and base radical cations. In general, this reaction is followed by the transport of base radical cations to sites of low oxidation potential, that is, GG, and conversion of G radical cations to DNA breaks. Here, we show that AQ also produces interstrand cross-links in DNA duplexes. About half of the cross-links collapse to single strands in hot piperidine treatment. The structure of stable interstrand cross-links was deduced by MS, NMR, and sequence substitution. The cross-links consist of a covalent link between the methyl group of T on one strand with either C6 or C7 of AQ on the other strand. The formation of interstrand cross-links decreased in O2 compared to deoxygenated solutions. In the presence of O2, the yield of breaks at GG doublets was 10-fold greater than that of cross-links for end tethered AQ, while cross-links exceeded breaks for centrally located AQ. The formation of stable cross-links can be explained by initial charge transfer from T to excited AQ, deprotonation of T radical cations, and condensation of the latter species with AQ radicals. These studies reveal a novel pathway of damage in the photolysis of AQ-DNA duplexes.  相似文献   

9.
2'-O-(3-(Furan-2-yl)propyl)adenosine was synthesized and evaluated for interstrand crosslink (ICL) formation in DNA duplexes. In situ oxidation of the furan moiety with NIS showed rapid crosslink formation to dA and dC, while dT and dG were inactive.  相似文献   

10.
The different antitumor and other biological effects of the third-generation antitumor platinum drug oxaliplatin [(1R,2R-diamminocyclohexane)oxalatoplatinum(II)] in comparison with those of conventional cisplatin [cis-diamminedichloridoplatinum(II)] are often explained by the ability of oxaliplatin to form DNA adducts of different conformation and consequently to exhibit different cytotoxic effects. This work describes, for the first time, the structural and biochemical characteristics of the interstrand cross-links of oxaliplatin. We find that: 1) DNA bending, unwinding, thermal destabilization, and delocalization of the conformational alteration induced by the cross-link of oxaliplatin are greater than those observed with the cross-link of cisplatin; 2) the affinity of high-mobility-group proteins (which are known to mediate the antitumor activity of platinum complexes) for the interstrand cross-links of oxaliplatin is markedly lower than for those of cisplatin; and 3) the chirality at the carrier 1,2-diaminocyclohexane ligand can affect some important structural properties of the interstrand cross-links of cisplatin analogues. Thus, the information contained in the present work is also useful for a better understanding of how the stereochemistry of the carrier amine ligands of cisplatin analogues can modulate their anticancer and mutagenic properties. The significance of this study is also reinforced by the fact that, in general, interstrand cross-links formed by various compounds of biological significance result in greater cytotoxicity than is expected for monofunctional adducts or other intrastrand DNA lesions. Therefore, we suggest that the unique properties of the interstrand cross-links of oxaliplatin are at least partly responsible for this drug's unique antitumor effects.  相似文献   

11.
DNA duplexes containing a directly opposed O(4)-2'-deoxythymidine-alkyl-O(4)-2'-deoxythymidine (O(4)-dT-alkyl-O(4)-dT) interstrand cross-link (ICL) have been prepared by the synthesis of cross-linked nucleoside dimers which were converted to phosphoramidites to produce site specific ICL. ICL duplexes containing alkyl chains of four and seven methylene groups were prepared and characterized by mass spectrometry and nuclease digests. Thermal denaturation experiments revealed four and seven methylene containing ICL increased the T(m) of the duplex with respect to the non-cross-linked control with an observed decrease in enthalpy based on thermodynamic analysis of the denaturation curves. Circular dichroism experiments on the ICL duplexes indicated minimal difference from B-form DNA structure. These ICL were used for DNA repair studies with O(6)-alkylguanine DNA alkyltransferase (AGT) proteins from human (hAGT) and E. coli (Ada-C and OGT), whose purpose is to remove O(6)-alkylguanine and in some cases O(4)-alkylthymine lesions. It has been previously shown that hAGT can repair O(6)-2'-deoxyguanosine-alkyl-O(6)-2'-deoxyguanosine ICL. The O(4)-dT-alkyl-O(4)-dT ICL prepared in this study were found to evade repair by hAGT, OGT and Ada-C. Electromobility shift assay (EMSA) results indicated that the absence of any repair by hAGT was not a result of binding. OGT was the only AGT to show activity in the repair of oligonucleotides containing the mono-adducts O(4)-butyl-4-ol-2'-deoxythymidine and O(4)-heptyl-7-ol-2'-deoxythymidine. Binding experiments conducted with hAGT demonstrated that the protein bound O(4)-alkylthymine lesions with similar affinities to O(6)-methylguanine, which hAGT repairs efficiently, suggesting the lack of O(4)-alkylthymine repair by hAGT is not a function of recognition.  相似文献   

12.
BACKGROUND: Overexpression of the high-mobility group, HMG I/Y, family of chromatin oncoproteins has been implicated as a clinical diagnostic marker for both neoplastic cellular transformation and increased metastatic potential of several human cancers. These minor groove DNA-binding oncoproteins are thus an attractive target for anti-tumor chemotherapy. FR900482 represents a new class of anti-tumor agents that bind to the minor groove of DNA and exhibit greatly reduced host toxicity compared to the structurally related mitomycin C class of anti-tumor drugs. We report covalent cross-linking of DNA to HMG I/Y by FR900482 in vivo which represents the first example of a covalent DNA-drug-protein cross-link with a minor groove-binding oncoprotein and a potential novel mechanism through which these compounds exert their anti-tumor activity. RESULTS: Using a modified chromatin immunoprecipitation procedure, fragments of DNA that have been covalently cross-linked by FR900482 to HMG I/Y proteins in vivo were polymerase chain reaction-amplified, isolated and characterized. The nuclear samples from control cells were devoid of DNA fragments whereas the nuclear samples from cells treated with FR900482 contained DNA fragments which were cross-linked by the drug to the minor groove-binding HMG I/Y proteins in vivo. Additional control experiments established that the drug also cross-linked other non-oncogenic minor groove-binding proteins (HMG-1 and HMG-2) but did not cross-link major groove-binding proteins (Elf-1 and NFkappaB) in vivo. Our results are the first demonstration that FR900482 cross-links a number of minor groove-binding proteins in vivo and suggests that the cross-linking of the HMG I/Y oncoproteins may participate in the mode of efficacy as a chemotherapeutic agent. CONCLUSIONS: We have illustrated that the FR class of anti-tumor antibiotics, represented in this study by FR900482, is able to produce covalent cross-links between the HMG I/Y oncoproteins and DNA in vivo. The ability of this class of compounds to cross-link the HMG I/Y proteins in the minor groove of DNA represents the first demonstration of drug-induced cross-linking of a specific cancer-related protein to DNA in living cells. We have also demonstrated that FR900482 cross-links other minor groove-binding proteins (HMG-1 and HMG-2 in the present study) in vivo; however, since HMG I/Y is the only minor groove-binding oncoprotein presently known, it is possible that these non-histone chromatin proteins are among the important in vivo targets of this family of drugs. These compounds have already been assessed as representing a compelling clinical replacement for mitomycin C due to their greatly reduced host toxicity and superior DNA interstrand cross-linking efficacy. The capacity of FR900482 to cross-link the HMG I/Y oncoprotein with nuclear DNA in vivo potentially represents a significant elucidation of the anti-tumor efficacy of this family of anticancer agents.  相似文献   

13.
DNA interchain cross-links formed by acrolein and crotonaldehyde   总被引:1,自引:0,他引:1  
Acrolein and higher alpha,beta-unsaturated aldehydes are bifunctional genotoxins. The deoxyguanosine adduct of acrolein, 3-(2-deoxy-beta-d-erythro-pentofuranosyl)-5,6,7,8-tetrahydro-8-hydroxypyrimido[1,2-a]purin-10(3H)-one (8-hydroxy-1,N(2)-propanodeoxyguanosine, 2a), is a major DNA adduct formed by acrolein. The potential for oligodeoxynucleotide duplexes containing 2a to form interchain cross-links was evaluated by HPLC, CZE, MALDI-TOF, and melting phenomena. Interchain cross-links represent one of the most serious types of damage in DNA since they are absolute blocks to replication. In oligodeoxynucleotides containing the sequence 5'-dC-2a, cross-linking occurred in a slow, reversible manner to the extent of approximately 50%. Enzymatic digestion to form 3-(2-deoxy-beta-d-erythro-pentofuranosyl)-5,6,7,8-tetrahydro-8-(N(2)-2'-deoxyguanosinyl)pyrimido[1,2-a]purin-10(3H)one (5a) and reduction with NaCNBH(3) followed by enzymatic digestion to give 1,3-bis(2'-deoxyguanosin-N(2)-yl)propane (6a) established that cross-linking had occurred with the exocyclic amino group of deoxyguanosine. It is concluded that the cross-link is a mixture of imine and carbinolamine structures. With oligodeoxynucleotide duplexes containing the sequence 5'-2a-dC, cross-links were not detected by the techniques enumerated above. In addition, (15)N-(1)H HSQC and HSQC-filtered NOESY spectra carried out with a duplex having (15)N-labeling of the target amino group established unambiguously that a carbinolamine cross-link was not formed. The potential for interchain cross-link formation by the analogous crotonaldehyde adduct (2b) was evaluated in a 5'-dC-2b sequence. Cross-link formation was strongly dependent on the configuration of the methyl group at C6 of 2b. The 6R diastereomer of 2b formed a cross-link to the extent of 38%, whereas the 6S diastereomer cross-linked only 5%.  相似文献   

14.
The acute hepatotoxicity displayed by the pyrrolizidine alkaloids, which obviates their clinical utility, is a result of activation in vivo by cytochrome P450 mediated oxidation. Now the first reductively activated progenitor of the highly cytotoxic dehydropyrrolizidine alkaloid dehydromonocrotaline has been synthesized and demonstrated to mediate interstrand DNA cross-link formation (see scheme); pyrrolizidine alkaloids exert their cytotoxicity through the formation of DNA-DNA interstrand and DNA-protein cross-links.  相似文献   

15.
We have developed a novel type of DNA interstrand cross-linking agent by synthesizing dimers of a pyrrole (Py)/imidazole (Im)-diamide-CPI conjugate, ImPyLDu86 (1), connected using seven different linkers. The tetramethylene linker compound, 7b, efficiently produces DNA interstrand cross-links at the nine-base-pair sequence, 5'-PyGGC(T/A)GCCPu-3', only in the presence of a partner triamide, ImImPy. For efficient cross-linking by 7b with ImImPy, one A.T base pair between two recognition sites was required to accommodate the linker region. Elimination of the A.T base pair and insertion of an additional A.T base pair and substitution with a G.C base pair significantly reduced the degree of cross-linking. The sequence specificity of the interstrand cross-linking by 7b was also examined in the presence of various triamides. The presence of ImImIm slightly reduced the formation of a cross-linked product compared to ImImPy. The mismatch partners, ImPyPy and PyImPy, did not produce an interstrand cross-link product with 7b, whereas ImPyPy and PyImPy induced efficient alkylation at their matching site with 7b. The interstrand cross-linking abilities of 7b were further examined using denaturing polyacrylamide gel electrophoresis with 5'-Texas Red-labeled 400- and 67-bp DNA fragments. The sequencing gel analysis of the 400-bp DNA fragment with ImImPy demonstrated that 7b alkylates several sites on the top and bottom strands, including one interstrand cross-linking match site, 5'-PyGGC(T/A)GCCPu-3'. To obtain direct evidence of interstrand cross-linkages on longer DNA fragments, a simple method using biotin-labeled complementary strands was developed, which produced a band corresponding to the interstrand cross-linked site on both top and bottom strands. Densitometric analysis indicated that the contribution of the interstrand cross-link in the observed alkylation bands was approximately 40%. This compound efficiently cross-linked both strands at the target sequence. The present system consisted of a 1:2 complex of the alkylating agent and its partner ImImPy and caused an interstrand cross-linking in a sequence-specific fashion according to the base-pair recognition rule of Py-Im polyamides.  相似文献   

16.
Malondialdehyde (MDA), a known mutagen and suspected carcinogen, is a product of lipid peroxidation and byproduct of eicosanoid biosynthesis. MDA can react with DNA to generate potentially mutagenic adducts on adenine, cytosine, and particularly guanine. In addition, repair-dependent frame shift mutations in a GCGCGC region of Salmonella typhimurium hisD3052 have been attributed to formation of interstrand cross-links (Mukai, F. H. and Goldstein, B. D. Science 1976, 191, 868--869). The cross-linked species is unstable and has never been characterized but has been postulated to be a bis-imino linkage between N(2) positions of guanines. An analogous linkage has now been investigated as a stable surrogate using the self-complementary oligodeoxynucleotide sequence 5'-d(AGGCG*CCT)(2,) in which G* represents guanines linked via a trimethylene chain between N(2) positions. The solution structure, obtained by NMR spectroscopy and molecular dynamics using a simulated annealing protocol, revealed the cross-link only minimally distorts duplex structure in the region of the cross-link. The tether is accommodated by partially unwinding the duplex at the lesion site to produce a bulge and tipping the guanine residues; the two guanines and the tether attain a nearly planar conformation. This distortion did not result in significant bending of the DNA, a result which was confirmed by gel electrophoresis studies of multimers of a 21-mer duplex containing the cross-link.  相似文献   

17.
Abstract— The distribution and repair of 8-methoxypsoralen-DNA interstrand cross-links in the ribosomal RNA gencs (rDNA) in Tetrahymena thermophila have been studied in vivo by Southern blot analysis. It is found that the cross-links at a density of ≤ 1/2 × 104 base pairs (bp) are distributed equally between three domains (terminal spacer, transcribed region and central spacer) as defined by restriction enzyme analysis ( Bam HI and Cla I). It is furthermore shown that a dosage resulting in approximately one cross-link per rDNA molecule (21 kbp, two genes) is suficient to block KNA synthesis. Finally, it is shown that the cross-links in the rDNA molecules are repaired at equal rate in all three domains within 24 h and that RNA synthesis is partly restored during this repair period. The majority of the cells also go through one to two cell divisions in this period but do not survive.  相似文献   

18.
Abstract— The photomediated induction of interstrand cross-links by 8-methoxypsoralen has been measured in the epidermal DNA of hairless mice. Equivalent efficiencies for cross-link induction were determined for HRS/J/Anl and SKH: hairless-1 mice. A wavelength dependence on the relative efficiency of cross-link induction was observed; a broad spectrum light source, 300–400 nm, was approximately 5 times more effective in cross-link formation than a 365 nm light source. Repeated exposure to 8-methoxypsoralen followed by ultraviolet light, 5 times a week for 6 weeks, altered epidermal thickness and resulted in a decreased efficiency for DNA cross-link formation.  相似文献   

19.
A methodology to synthesize oligonucleotides containing an alkyl interstrand cross-link between the two O6 atoms of deoxyguanosine has been developed. This cross-link is designed to serve as a stable structural mimic of the lesion formed in duplex DNA with the bifunctional alkylating agent hepsulfam. The O6-alkyl coupling is performed via a Mitsunobu reaction between a nucleoside and mono-protected 1,7-heptanediol. Solid-phase oligonucleotide synthesis using a nucleoside bis-phosphoramidite allows for the assembly of the cross-linked duplex. Sufficient quantities of this cross-linked duplex were obtained for various structural and biological investigations.  相似文献   

20.
We here report a highly site and sequence selective formation of an interstrand cross-link of (BP)U-containing oligomer duplexes. The cross-link was found spontaneously reverted to original oligomers upon heating, providing a new method for the temporary connection of two DNA strands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号