首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several new heterometallic metal-organic frameworks (MOFs) based on tris(dipyrrinato) metalloligands and Ag+ salts are reported. MOFs were prepared systematically to examine the effects of the core metal ion, counteranion, and ligand structure on the topology of the resultant network. The effect of the metal ion (Fe3+ vs Co3+) on MOF structure was generally found to be negligible, thereby permitting the facile synthesis of trimetallic Fe/Co/Ag networks. The choice of anion (e.g., silver salt) was found to have a pronounced effect on the MOF topology. Networks prepared with salts of AgO3SCF3 and AgBF4 reliably formed three-dimensional (10,3) nets, whereas use of AgPF6 and AgSbF6 produced two-dimensional (6,3) honeycomb nets. The topology generated upon formation of the MOF was found to be robust in certain cases, as demonstrated by anion-exchange experiments. Anion exchange was confirmed by X-ray crystallography in a rare set of apparent single-crystal-to-single-crystal transformations. The data presented here strongly suggest that the coordinative ability of the anion does not play a significant role in the observed templating effect. Finally, changes in the length of the tris(dipyrrinato) metalloligand were found to override the anion templating effect, resulting exclusively in two-dimensional (6,3) nets. These studies provide a basis for the rational design of MOF topologies by choice of ligand structure and anion templating effects. Furthermore, the results demonstrate the ability of carefully designed metalloligands to generate MOFs of structure strikingly similar to that of their organic counterparts.  相似文献   

2.
Assembly of ultrathin polymer multilayer films by click chemistry   总被引:1,自引:0,他引:1  
Layer-by-layer (LbL) assembly is a versatile and robust technique for fabricating tailored thin films of diverse composition. Herein we report a new method of covalent coupling, click chemistry, to facilitate the LbL assembly of thin films. Linear film growth was observed using both UV-vis and FTIR spectroscopy, and film thicknesses were determined by ellipsometry and atomic force microscopy. The assembled films are shown to be stable in a wide pH range. This technique offers the potential to enable the synthesis of new types of stable and responsive LbL films from a variety of polymers.  相似文献   

3.
Microcontact printing of colloidal crystals   总被引:1,自引:0,他引:1  
Patterned two-dimensional (2D) colloidal crystals have been transferred by a modified mucp technique that was based on the use of polymer film as "glue" to provide an efficient interaction between the microsphere "ink" and substrate. The versatility of this method has been demonstrated by the patterning of colloidal crystal on a nonplanar substrate and heterogeneously structured colloidal crystal film. The table of contents graphic shows an SEM image of the ordered parallel lines of 2D colloidal crystals on a polymer-coated glass tube with a 3.7 mm radius of curvature.  相似文献   

4.
Microfluidic devices are well suited for the miniaturization of biological assays, in particular when only small volumes of samples and reagents are available, short time to results is desirable, and multiple analytes are to be detected. Microfluidic networks (MFNs), which fill by means of capillary forces, have already been used to detect important biological analytes with high sensitivity and in a combinatorial fashion. These MFNs were coated with Au, onto which a hydrophilic, protein-repellent monolayer of thiolated poly(ethyleneglycol) (HS-PEG) was self-assembled, and the binding sites for analytes were present on a poly(dimethylsiloxane) (PDMS) sealing cover. We report here a set of simple methods to extend previous work on MFNs by integrating binding sites for analytes inside the microstructures of MFNs using microcontact printing (muCP). First, fluorescently labeled antibodies (Abs) were microcontact-printed from stamps onto planar model surfaces such as glass, Si, Si/SiO2, Au, and Au derivatized with HS-PEG to investigate how much candidate materials for MFNs would quench the fluorescence of printed, labeled Abs. Au coated with HS-PEG led to a fluorescence signal that was approximately 65% weaker than that of glass but provided a convenient surface for printing Abs and for rendering the microstructures of the MFNs wettable. Then, proteins were inked from solution onto the surface of PDMS (Sylgard 184) stamps having continuous or discontinuous micropatterns or locally inked onto planar stamps to investigate how the aspect ratio (depth:width) of microstructures and the printing conditions affected the transfer of protein and the accuracy of the resulting patterns. By applying a controlled pressure to the back of the stamp, Abs were accurately microcontact-printed into the recessed regions of MFNs if the aspect ratio of the MFN microstructures was lower than approximately 1:6. Finally, the realization of a simple assay between Abs (used as antigens) microcontact-printed in microchannels and Abs from solution suggests that this method could become useful to pattern proteins in microstructures for advanced bioanalytical purposes.  相似文献   

5.
By direct synthesis route, chiral metal-organic frameworks are synthetized with enantiopure ligands or spontaneous resolution; by indirect method, post-synthetic method and chiral inductionare introduced to construct chiral metal-organic frameworks.  相似文献   

6.
Metal-organic frameworks (MOFs), also known as coordination polymers, are formed by the self-assembly of metallic centres and bridging organic linkers. In this critical review, we review the key advances in the field and discuss the relationship between the nature and structure of specifically designed organic linkers and the properties of the products. Practical examples demonstrate that the physical and chemical properties of the linkers play a decisive role in the properties of novel functional MOFs. We focus on target materials suitable for the storage of hydrogen and methane, sequestration of carbon dioxide, gas separation, heterogeneous catalysis and as magnetic and photoluminescent materials capable of both metal- and ligand-centred emission, ion exchangers and molecular sieves. The advantages of highly active discrete complexes as metal-bearing ligands in the construction of MOFs are also briefly reviewed (128 references).  相似文献   

7.
Homochiral crystallizations of two enantiomeric metal-organic frameworks (MOFs) Ce-MDIP1 and Ce-MDIP2 were achieved by using L- or D-BCIP as chiral inductions, respectively, where the chiralities were characterized by solid state CD spectra. Ce-MDIPs exhibit excellent catalytic activity and high enantioselectivity for the asymmetric cyanosilylation of aromatic aldehydes; the homochiral Cd-TBT MOF having L-PYI as a chiral adduct exhibits stereochemical catalysis toward the Aldol reactions.  相似文献   

8.
9.
A personal perspective recognising the developments in the field of metal-organic frameworks, of where the challenges currently lie and the opportunities that are on the horizon.  相似文献   

10.
11.
12.
Metal–organic frameworks(MOFs) are a fascinating class of crystalline materials constructed from selfassembly of metal cations/clusters and organic ligands. Both metal and organic components can be used to generate luminescence, and can further interact via antenna effect to increase the quantum yield,providing a versatile platform for chemical sensing based on luminescence emission. Moreover, MOFs can be miniaturized to nanometer scale to form nano-MOF(NMOF) materials, which exhibit many advantages over conventional bulk MOFs in terms of the facile tailorability of compositions, sizes and morphologies, the high dispersity in a wide variety of medium, and the intrinsic biocompatibility. This review will detail the development of NMOF materials as chemical sensors, including the synthetic methodologies for designing NMOF sensory materials, their luminescent properties and potential sensing applications.  相似文献   

13.
14.
15.
16.
Chiral metal-organic framework coated open tubular columns are used in the high-resolution gas chromatographic separation of chiral compounds. The columns have excellent selectivity and also possess good recognition ability toward a wide range of organic compounds such as alkanes, alcohols, and isomers.  相似文献   

17.
Manganese-containing nanoscale metal-organic frameworks (NMOFs) with controllable morphologies were synthesized using reverse-phase microemulsion techniques at room temperature and a surfactant-assisted procedure at 120 degrees C with microwave heating. The nanoparticles were characterized using a variety of methods including SEM, TEM, TGA, PXRD, and ICP-MS. Although the nanoparticles gave a modest longitudinal relaxivity (r1) on a per Mn basis, they provided an efficient vehicle for the delivery of large doses of Mn2+ ions which exhibited very high in vitro and in vivo r1 values and afforded excellent MR contrast enhancement. The particle surface was also modified with a silica shell to allow covalent attachment of a cyclic RGD peptide and an organic fluorophore. The cell-targeting molecules on the Mn NMOFs enhanced their delivery to cancer cells to allow for target-specific MR imaging in vitro. The MR contrast enhancement was also demonstrated in vivo using a mouse model. Such core-shell hybrid nanostructures provide an ideal platform for targeted delivery of other imaging and therapeutic agents to diseased tissues.  相似文献   

18.
Electroreduction of oxoanions affords hydroxide equivalents that induce selective deposition of crystalline metal-organic frameworks (MOFs) on conductive surfaces. The method is illustrated by cathodic electrodeposition of Zn(4)O(BDC)(3) (MOF-5; BDC = 1,4-benzenedicarboxylate), which is deposited at room temperature in only 15 min under cathodic potential. Although many crystalline phases are known in the Zn(2+)/BDC(2-) system, MOF-5 is the only observed crystalline MOF phase under these conditions. This fast and mild method of synthesizing MOFs is amenable to direct surface functionalization and could impact applications requiring conformal coatings of microporous MOFs, such as gas separation membranes and electrochemical sensors.  相似文献   

19.
Metal-organic frameworks (MOFs), also known as coordination polymers, have emerged as a new class of crystalline porous materials, which are constructed from metal ions or metal ion clusters and bridging organic linkers. MOFs have tunable pores and functionalities, and usually exhibit very high surface areas. The potential applications of porous MOFs cover a broad range of fields and most of their applications are related to pore sizes, shapes and structures/environments. In this feature article, we provide an overview of the recent developments of porous MOFs as platforms in the functional applications of sorption and separation, heterogeneous catalysis, as supports/host matrices for metal nanoparticles, and as templates/nanoreactors for new material preparation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号