首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FTIR and FT-Raman spectra of four generations of phosphorus-containing dendrons with terminal aldehyde or PCl groups have been recorded and analyzed. Their spectral patterns are determined by the ratio T/R (T, the number of terminal groups; R, the number of repeated units). Bands assigned to the core, repeated units and terminal groups were separated by the difference spectroscopy method. The optimized geometry, frequencies and intensity of IR bands of G(1v) generation dendron with terminal aldehyde groups were obtained by the density functional theory (DFT). It was found that the internal skeleton of molecules exists in a single stable conformation with planar O-C(6)H(4)-CHN-N(CH(3))-P(S) fragments, but terminal groups may adopt the t,g,g- and t,-g,g-rotational isomers. The t,-g,g-conformer is 0.74 kcal/mol less stable compared to the t,g,g-conformer. The bond length and bond angles obtained by DFT show the best agreement with experimental data. Relying on DFT calculations a complete assignment of vibrations is proposed for different parts of the studied dendrons. The calculated frequencies and intensity of IR bands of the t,g,g- and t,-g,g-conformers of G(1v) are found to be in reasonable agreement with the experimental results. The most reactive site in dendron is the core function and vinyl group is preferred for nucleophilic attack. In dendrimer the most reactive are the terminal groups.  相似文献   

2.
The FTIR spectra of G(3), G(4), and G(9) generations of polybutylcarbosilane dendrimers have been recorded and analyzed. The structural optimization and normal mode analysis were performed for G(1) generation on the basis of density functional theory (DFT). This calculation gave vibrational frequencies and infrared intensities for the t,t- and g,-g-conformers of the butyl terminal groups, attached to the same silicon atom. The g,-g-conformer is 5.83 kcal/mol less stable compared to t,t-conformer. Relying on DFT calculations a complete vibrational assignment is proposed for different parts of the studied dendrimers. The dependence of band full width at half height in the IR spectra on generation number is established. The IR spectra of carbosilane dendrimers at higher temperatures at the ambient air and isolated from atmosphere air were studied. At temperature 180 degrees C all studied carbosilane dendrimers are stable when contact with atmosphere is absent, in the air they oxidize and thus CO and SiO groups appear.  相似文献   

3.
The FTRaman and FTIR spectra for Toluic acid (TA) have been recorded in the region 4000-100 cm(-1) and compared with the harmonic vibrational frequencies calculated using HF/DFT (LSDA and B3LYP) method BY employing 6-311G (d, p) basis set with appropriate scale factors. IR intensities and Raman activities are also calculated by HF and DFT (LSDA/B3LYP) methods. Optimized geometries of the molecule have been interpreted and compared with the reported experimental values for benzoic acid and some substituted benzoic acids. The experimental geometrical parameters show satisfactory agreement with the theoretical prediction from HF and DFT. The scaled vibrational frequencies at B3LYP/6-311G (d, p) seem to coincide with the experimentally observed values with acceptable deviations. The theoretical spectrograms (IR and Raman) have been constructed and compared with the experimental FT-IR and FT-Raman spectra. Some of the vibrational frequencies of the TA are effected upon profusely with the methyl substitutions in comparison to benzoic acid and these differences are interpreted.  相似文献   

4.
This work deals with the vibrational spectroscopy of 2-amino 4-hydroxy 6-triflouromethylpyrimidine (AHFMP) by means of quantum chemical calculations. The mid and far FTIR and FT-Raman spectra were measured in the condensed state. The fundamental vibrational frequencies and intensity of vibrational bands were evaluated using density functional theory (DFT) with the standard B3LYP/6-31G* and B3LYP/6-311+G** method and basic set combinations. Normal co-ordinate calculations were performed with the DFT force field corrected by a recommended set of scaling factors yielding fairly good agreement between observed and calculated frequencies. Simulation of infrared and Raman spectra utilizing the results of these calculations led to excellent overall agreement with the observed spectral patterns. The SQM approach applying selective scaling of the DFT force field was shown to be superior to the uniform scaling method in its ability to allow for making modifications in the band assignment, resulting in more accurate simulation of IR and Raman Spectra.  相似文献   

5.
The FT-IR and FT-Raman spectra of 1-bromo-4-chlorobenzene (1-Br-4-CB) have been recorded using Bruker IFS 66V spectrometer in the region of 4000-100 cm(-1). Ab-initio-HF (HF/6-311+G (d, p)) and DFT (B3LYP/6-31++G (d, p)/6-311++G (d, p)) calculations have been performed giving energies, optimized structures, harmonic vibrational frequencies, depolarization ratios, IR intensities, Raman activities. The vibrational frequencies are calculated and scaled values are compared with FT-IR and FT-Raman experimental values. Comparison of simulated spectra with the experimental spectra provides important information, the computational method have the ability to describe the vibrational methods. The frequency estimation analysis on HF and DFT is made. The impact of di-substituted halogens on the benzene molecule has also been discussed.  相似文献   

6.
The FTIR and FT Raman spectra of p-anisaldehyde has been recorded in the regions 4,000-400 and 3,500-100 cm(-1), respectively. The optimized geometry, frequency and intensity of the vibrational bands of p-anisaldehyde were obtained by ab initio and DFT levels of theory with complete relaxation in the potential energy surface using 6-31G(d,p) basis set. A complete vibrational assignment aided by the theoretical harmonic frequency analysis has been proposed. The harmonic vibrational frequencies calculated have been compared with experimental FTIR and FT Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.  相似文献   

7.
The Fourier Transform Infrared spectrum of (S)-4 ethyl-4-hydroxy-1H-pyrano [3',4':6,7]-indolizino-[1,2-b-quinoline-3,14-(4H,12H)-dione] [camptothecin] was recorded in the region 4000-400 cm(-1). The Fourier Transform Raman spectrum of camptothecin (CPT) was also recorded in the region 3500-50 cm(-1). Quantum chemical calculations of geometrical structural parameters and vibrational frequencies of CPT were carried out by MP2/6-31G(d,p) and density functional theory DFT/B3LYP/6-311++G(d,p) methods. The assignment of each normal mode has been made using the observed and calculated frequencies, their IR and Raman intensities. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. Most of the computed frequencies were found to be in good agreement with the experimental observations. The isotropic chemical shifts computed by (13)C and (1)H NMR analysis also show good agreement with experimental observations. Comparison of calculated spectra with the experimental spectra provides important information about the ability of computational method to describe the vibrational modes of large sized organic molecule.  相似文献   

8.
The FT-Raman and FT-IR spectra for 3-Ethylpyridine (3-EP) have been recorded in the region 4000-100 cm(-1) and compared with the harmonic vibrational frequencies calculated using HF/DFT (B3LYP) method by employing 6-31G(d,p) and 6-311++G(d,p) basis set with appropriate scale factors. IR intensities and Raman activities are also calculated by HF and DFT (B3LYP) methods. Optimized geometries of the molecule have been interpreted and compared with the reported experimental values of some substituted benzene. The experimental geometrical parameters show satisfactory agreement with the theoretical prediction from HF and DFT. The scaled vibrational frequencies at B3LYP/6-311++G(d,p) seem to coincide with the experimentally observed values with acceptable deviations. The theoretical spectrograms (IR and Raman) have been constructed and compared with the experimental FT-IR and FT-Raman spectra. Some of the vibrational frequencies of the pyridine are effected upon profusely with the C2H5 substitutions in comparison to pyridine and these differences are interpreted.  相似文献   

9.
10.
FT IR and Raman spectra of 12 generations of the phosphorus-containing starburst dendrimers containing P=S and P=O bonds with terminal aldehyde and P-Cl groups were compared. The influence of the encirclement on the band frequencies and intensity is studied and due to the predictable, controlled and reproducible structure of the dendrimers the information usually inaccessible is obtained. Bands in the IR difference (G2'(P=O)-G2'(P=S)) spectra have characteristic EPR-like form. The strong band at 1600 cm(-1) show marked changes of the optical density in dependence of the aldehyde (-CH=O) or azomethyne (-CH=N-) substituents in the aromatic ring. The analysis of difference spectra enables one to assign the characteristic bands nu(P=S) and nu(P=O) for the bonds in the core, in the repeating unit and in the terminal groups of the dendrimers. This assignment is supported by the calculation of the absorption curves of the different fragments of dendrimer with the force constants and electro-optical parameters. The IR and Raman spectra of dendrimers are depended on the ratio of number terminal groups to a number of repeating units, which in its turn is strictly determined by the generation number. Thus, the marked differences in the vibrational spectra of the first successive generations aspire to zero for the higher ones. The rather rigid repeated units with little conformational flexibility define the perfect microstructure of the studied phosphorus-containing dendrimers up to the eleventh generation.  相似文献   

11.
Two synthetic routes to "Janus"-type dendrimers possessing ammonium groups on one side and fluorescent dansyl derivatives on the other side are described. These surface-block dendrimers are obtained by the coupling of two different dendrons, built from the hexafunctional cyclotriphosphazene core. Their characterization and their photophysical behavior are reported. The largest compound possesses 10 ammonium groups and 5 dansyl groups; it is potentially useful as a fluorescent label in materials science and biology.  相似文献   

12.
A systematic vibrational spectroscopic assignment and analysis of benzohydrazide (BH) has been carried out by using FTIR and FT-Raman spectral data. The vibrational analysis were aided by electronic structure calculations--ab initio (RHF) and hybrid density functional methods (B3LYP and B3PW91) performed with 6-31G(d,p) and 6-311++G(d,p) basis sets. Molecular equilibrium geometries, electronic energies, IR intensities, harmonic vibrational frequencies, depolarization ratios and Raman activities have been computed. Potential energy distribution (PED) and normal mode analysis have also been performed. The assignments proposed based on the experimental IR and Raman spectra have been reviewed and complete assignment of the observed spectra have been proposed. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λ(max) were determined by time-dependent DFT (TD-DFT) method. The geometrical, thermodynamical parameters and absorption wavelengths were compared with the experimental data. The interactions of carbonyl and hydrazide groups on the benzene ring skeletal modes were investigated.  相似文献   

13.
Fourier-transform Raman and infrared spectra of 2-nitroanisole are recorded (4000-100 cm(-1)) and interpreted by comparison with respective theoretical spectra calculated using HF and DFT method. The geometrical parameters with C(S) symmetry, harmonic vibrational frequencies, infrared and Raman scattering intensities are determined using HF/6-311++G (d, p), B3LYP/6-311+G (d, p), B3LYP/6-311++G (d, p) and B3PW91/6-311++G (d, p) level of theories. A detailed vibrational spectral analysis has been carried out and assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The results of the calculations have been used to simulate IR and Raman spectra for the molecule that showed good agreement with the observed spectra. The SQM method, which implies multiple scaling of the DFT force fields has been shown superior to the uniform scaling approach. The vibrational frequencies and the infrared intensities of the C-H modes involved in back-donation and conjugation are also investigated.  相似文献   

14.
The solid phase FTIR and FT-Raman spectra of 4-butyl benzoic acid (4-BBA) have been recorded in the regions 400-4000 and 50-4000cm(-1), respectively. The spectra were interpreted in terms of fundamentals modes, combination and overtone bands. The structure of the molecule was optimized and the structural characteristics were determined by density functional theory (DFT) using B3LYP method with 6-311++G(d,p) as basis set. The vibrational frequencies were calculated for monomer and dimer by DFT method and were compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. The infrared and Raman spectra were also predicted from the calculated intensities. (13)C and (1)H NMR spectra were recorded and (13)C and (1)H nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. UV-visible spectrum of the compound was recorded in the region 200-400nm and the electronic properties HOMO and LUMO energies were measured by time-dependent TD-DFT approach. The geometric parameters, energies, harmonic vibrational frequencies, IR intensities, Raman intensities, chemical shifts and absorption wavelengths were compared with the available experimental data of the molecule.  相似文献   

15.
Becke 3-Lee-Yang-Parr density functional theory (DFT) calculations using 6-311G** and 6-311G(2df,p) basis sets were carried out to study molecular structures and vibrational spectra of 3,6-dichlorocarbazole and 3,6-dibromocarbazole. The optimized geometries, vibrational frequencies, IR intensities, and Raman activities have been obtained. On the basis of B3LYP calculations, a normal mode analysis was performed to assign the vibrational fundamental frequencies according to the potential energy distributions. The computational frequencies are in good agreement with the observed results.  相似文献   

16.
The mid and far FTIR and Raman spectra were measured in the liquid state. The fundamental vibrational frequencies and intensity of vibrational bands were evaluated using density functional theory (DFT) and standard B3LYP/6-311+G** basis set combination. The vibrational spectra were interpreted, with the aid of normal coordinate analysis based on a scaled quantum mechanical (SQM) force field. The infrared and Raman spectra were also predicted from the calculated intensities. Comparison of simulated spectra with the experimental spectra provides important information about the ability of the computational method to describe the vibrational modes. Unambiguous vibrational assignment of all the fundamentals was made using the total energy distribution (TED).  相似文献   

17.
The FT-Raman and FT-IR spectra for benzenesulfonic acid methyl ester (BSAME) have been recorded in the region 4000-100 cm(-1) and compared with the harmonic vibrational frequencies calculated using DFT (LSDA, B3LYP, B3PW91 and MPW1PW91) method by employing 6-311G (d, p) basis set with appropriate scale factors. IR intensities and Raman activities are also calculated by DFT (LSDA, B3LYP, B3PW91 and MPW1PW91) methods. Optimized geometries of the molecule have been interpreted and compared with the reported experimental values for sulfonic acid and some substituted sulfonic acids. The experimental geometrical parameters show satisfactory agreement with the theoretical prediction from DFT. The scaled vibrational frequencies at LSDA/B3LYP/6-311G (d, p) seem to coincide with the experimentally observed values with acceptable deviations. The theoretical spectrograms (IR and Raman) have been constructed and compared with the experimental FT-IR and FT-Raman spectra. Some of the vibrational frequencies of the sulfonic acid are effected upon profusely with the methyl substitution in comparison to benzene sulfonamide and these differences are interpreted.  相似文献   

18.
The FTIR and FT Raman spectra of 3′-chloropropiophenone and 3′-nitropropiophenone have been recorded in the regions 4000–400 and 3500–100 cm?1 respectively. The optimized geometry, frequency and intensity of the vibrational bands of 3′-chloropropiophenone and 3′-nitropropiophenone were obtained by ab initio and DFT levels of theory with complete relaxation in the potential energy surface using 6-31G (d,p) basis set. A complete vibrational assignment aided by the theoretical harmonic frequency analysis has been proposed. The harmonic vibrational frequencies calculated have been compared with experimental FTIR and FT Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed simulated spectrograms.  相似文献   

19.
The FT Raman spectra of the zero and first generations of phosphorus-containing dendrimers built from thiophosphoryl, cyclotriphosphazene and phthalocyanine core with terminal oxybenzaldehyde groups have been recorded and analyzed. The structural optimization and normal mode analysis were performed for dendrimers on the basis of the density functional theory (DFT). The calculated geometrical parameters, harmonic vibrational frequencies and Raman scattering activities are predicted in a good agreement with the experimental data. The experimental Raman spectra of dendrimers were interpreted by means of potential energy distribution. Relying on DFT calculations the lines of the cores, repeating units and terminal groups of dendrimers were assigned.The influence of the encirclement on the line frequencies and intensities was studied and due to the predictable, controlled and reproducible structure of dendrimers the information, usually inaccessible is obtained. The strong line at 1600 cm−1 show marked changes of intensity in dependence of aldehyde (CHO) or azomethyne (CHN) substituents in the aromatic ring. The polarizabilities and lipophilicity of dendrimers were estimated.  相似文献   

20.
FT-IR and FT-Raman (4000–100 cm−1) spectral measurements of 3-methyl-1,2-butadiene (3M12B) have been attempted in the present work. Ab-initio HF and DFT (LSDA/B3LYP/B3PW91) calculations have been performed giving energies, optimized structures, harmonic vibrational frequencies, IR intensities and Raman activities. Complete vibrational assignments on the observed spectra are made with vibrational frequencies obtained by HF and DFT (LSDA/B3LYP/B3PW91) at 6-31G(d,p) and 6-311G(d,p) basis sets. The results of the calculations have been used to simulate IR and Raman spectra for the molecule that showed good agreement with the observed spectra. The potential energy distribution (PED) corresponding to each of the observed frequencies are calculated which confirms the reliability and precision of the assignment and analysis of the vibrational fundamentals modes. The oscillation of vibrational frequencies of butadiene due to the couple of methyl group is also discussed. A study on the electronic properties such as HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The thermodynamic properties of the title compound at different temperatures reveal the correlations between standard heat capacities (C) standard entropies (S), and standard enthalpy changes (H).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号