首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Highly sensitive SERS substrates based on deposition of silver nanoparticles on commercially available filter paper were prepared in this work, and used to overcome problems found in analyses of aqueous samples. To prepare silver nanoparticle- (AgNP) doped filter substrates, a silver mirror reaction was used. The procedures for substrate preparation were systematically optimized. Pretreatment of filter paper, reaction time, temperature, and concentration of reagents for silver mirror reactions were studied. The morphologies of the resulting substrates were characterized by field-emission scanning electron microscopy (FE-SEM) and correlated with the SERS signals by probing with p-nitrothiophenol (pNTP). Filter papers with different pretreatments were found to have different sizes and distributions of AgNPs. The best performance was found when filter paper was pre-treated with ammonia solution before growth of AgNPs. Based on the SEM images, the resulting AgNPs had roughly spherical shape with a high degree of uniformity. The silver-coated filter paper substrates provide much higher SERS signals compared to glass substrates and the reproducibility was improved significantly. Based on statistical analyses, the relative standard deviations for substrate-to-substrate and spot-to-spot were both were less than 8% and the enhancement factors for the substrates were, in general, higher than 107. The SERS substrates were used to selectively detect tyrosine in aqueous solution. Results indicate that filter-based SERS substrates are highly suited to detection of tyrosine. Compared to glass-based SERS substrates, 50 times more SERS signal was observed in detection of tyrosine. The linear range can be up to 100 μM with a detection limit of 625 nM (SN(-1)=3).  相似文献   

2.
This paper reports the synthesis and characterization of surface-enhanced Raman scattering (SERS) label-tagged gold nanostars, coated with a silica shell containing methylene blue photosensitizing drug for singlet-oxygen generation. To our knowledge, this is the first report of nanocomposites possessing a combined capability for SERS detection and singlet-oxygen generation for photodynamic therapy. The gold nanostars were tuned for maximal absorption in the near-infrared (NIR) spectral region and tagged with a NIR dye for surface-enhanced resonance Raman scattering (SERRS). Silica coating was used to encapsulate the photosensitizer methylene blue in a shell around the nanoparticles. Upon 785 nm excitation, SERS from the Raman dye is observed, while excitation at 633 nm shows fluorescence from methylene blue. Methylene-blue-encapsulated nanoparticles show a significant increase in singlet-oxygen generation as compared to nanoparticles synthesized without methylene blue. This increased singlet-oxygen generation shows a cytotoxic effect on BT549 breast cancer cells upon laser irradiation. The combination of SERS detection (diagnostic) and singlet-oxygen generation (therapeutic) into a single platform provides a potential theranostic agent.  相似文献   

3.
Faulds K  Smith WE  Graham D  Lacey RJ 《The Analyst》2002,127(2):282-286
Methods of detection of amphetamine sulfate using surface enhanced Raman scattering (SERS) from colloidal suspensions and vapour deposited films of both silver and gold are compared. Different aggregating agents are required to produce effective SERS from silver and gold colloidal suspensions. Gold colloid and vapour deposited gold films give weaker scattering than the equivalent silver substrates when high concentrations of drug are analysed but they also give lower detection limits, suggesting a smaller surface enhancement but stronger surface adsorption. A 10(-5) mol dm(-3) solution (the final concentration after addition of colloid was 10(-6) mol dm(-3)) of amphetamine sulfate was detected from gold colloid with an RSD of 5.4%. 25 microl of the same solution could be detected on a roughened gold film. The intensities of the spectra varied across the film surface resulting in relatively high RSDs. The precision was improved by averaging the scattering from several points on the surface. An attempt to improve the detection limit and precision by concentrating a suspension of gold colloid and amphetamine sulfate in aluminium wells did not give effective quantitation. Thus, positive identification and semi-quantitative estimation of amphetamine sulfate can be made quickly and easily using SERS from suspended gold colloid with the appropriate aggregating agents.  相似文献   

4.
This Article describes the synthesis of Ag nanobars with different aspect ratios using a seed-mediated method and evaluation of their use for surface-enhanced Raman scattering (SERS). The formation of Ag nanobars was found to critically depend on the introduction of a bromide compound into the reaction system, with ionic salts being more effective than covalent molecules. We examined single-crystal seeds with both spherical and cubic shapes and found that Ag nanobars grown from spherical seeds had much higher aspect ratios than those grown from cubic seeds. The typical product of a synthesis contained nanocrystals with three different morphologies: nanocubes, nanobars with a square cross section, and nanobars with a rectangular cross section. Their formation can be attributed to the difference in growth rates along the three orthogonal <100> directions. The SERS enhancement factor of the Ag nanobar was found to depend on its aspect ratio, its orientation relative to the laser polarization, and the wavelength of excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号