首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present work introduces the interaction of hard and soft colloids in aqueous solutions at various temperatures and concentrations, as well as at critical conditions of temperature induced phase separation. Hard and soft colloids are represented by luminescent silica nanoparticles and aggregates of PEO-PPO-PEO and PPO-PEO-PPO triblock copolymers correspondingly. The formation of the mixed aggregates between hard and soft colloids in equilibrium conditions has been revealed by dynamic light scattering measurements. The distribution of silica nanoparticles between aqueous and surfactant rich phases after phase separation highlights the effect of pH, architecture and concentration of triblock copolymers on the mixed hard-soft colloids aggregation at cloud point conditions. The peculiar aggregation and phase behavior of PPO-PEO-PPO pluronics should be assumed as the main reason of the enhanced mixed aggregation with SNs at increased temperatures and concentrated conditions.  相似文献   

2.
本文系统研究了四-(4-苯基磺酸基)卟啉(TPPS)在由聚乙二醇辛基苯基醚(TX-100)构筑的反相微乳液内相中的聚集行为。通过改变反相微乳水相液滴的pH值、粒径及TPPS的浓度,发现在反相乳液内相中TPPS的表观pKa明显小于在水溶液中的pKa(4.9),并且,TPPS的表观pKa随着水相液滴粒径的减小而降低;当水相液滴的pH > pKa时,TPPS以去质子化单体H2TPPS4-形式存在,而当pH < pKa时,TPPS以质子化单体H4TPPS2-和J-聚集两种形式存在,并且TPPS浓度的增大,促进了H4TPPS2-向J-聚集转变;在pH值不变的条件下,随着水相液滴粒径的增大,TPPS的存在状态由H2TPPS4-向H4TPPS2-转变,并形成J-聚集。  相似文献   

3.
On the basis of surface tension values of the aqueous solution of cetyltrimethylammonium bromide (CTAB) and Triton X-100 (TX-100) mixtures measured at 293 K as a function of CTAB or TX-100 concentration at constant TX-100 or CTAB concentration, respectively, the real surface area occupied by these surfactants at the water–air interface was established which is inaccessible in the literature. It appeared that at the concentration of the CTAB and TX-100 mixture in the bulk phase corresponding to the unsaturated monolayer at the water air-interface this area is the same as in the monolayer formed by the single surfactant at the same concentration as in the mixture. In the saturated mixed monolayer at this interface the area occupied by both surfactants is lower than that in the single surfactant monolayer corresponding to the same concentration in the aqueous solution. However, the decrease of the CTAB adsorption is lower than that of TX-100 and the total area occupied by the mixture of surfactants is also lower than that of the single one. The area of particular surfactants in the mixed saturated monolayer changes as a function of TX-100 and CTAB mixture concentration and at the concentrations close to CMC or higher the area occupied by both surfactants is the same. The changes of the composition of the mixed surface monolayer are connected with the synergetic effect in the reduction of the water surface tension by the adsorption of CTAB and TX-100 at the water–air interface. This effect was confirmed by the values of the standard Gibbs free energy of adsorption of both individual surfactants and their mixtures with different compositions in the bulk phase determined by using the Langmuir equation if RT instead of nRT was applied in this equation.  相似文献   

4.
The behavior of two polydisperse nonionic surfactants, poly (oxyethylene) glycol alkylphenyl ether TX-35 and TX-100, at the prewetted silica gel/n-heptane and dried silica gel/n-heptane interfaces has been compared by the determination of the average adsorption isotherms of the polydisperse surfactants and of displacement enthalpies. From HPLC experiments, we could also separately quantify the adsorption of each ethyleneoxide (EO) fractions for silica gel from the polydisperse surfactant solution. The adsorption isotherms clearly indicate an incomplete preferential adsorption of the large (EO) chains over the small ones, as well on dried silica gel as on a prehydrated sample. This preferential adsorption and its driving force follow the solubility rules of the poly(oxyethylene) glycol alkylphenyl ether in an apolar solvent and support the idea of a solubility-limited adsorption: solubility in organic solvents of the smaller (EO) chains is much more significant than that of the longer ones and hence prevents adsorption of the smaller species. Consequently, it is observed that the presence of interfacial water decreases the affinity of TX-35 molecules for the hydrophilic silica surface due to the hydration of (EO) chains. In contrast, for TX-100 adsorption after the prewetting treatment the clearest trend is a drastic increase of the adsorption ascribed to the additional solubilization (and micellization) of the TX-100 molecules in the interfacial aqueous phase. The differential molar enthalpies of displacement show a change in the adsorption mechanism, depending on the presence of molecular water on the surface. In the initial part of the adsorption isotherm, a prevailing exothermic process is obtained with prehydrated silica and suggests that hydration of the polar heads of TX-35 and the solubilization of the TX-35 in interfacial water are occurring. For higher equilibrium concentrations, the enthalpies of displacement observed with the prehydrated adsorbent become slightly lower than those obtained with dry silica gel. It may be that this difference is due to the micellization phenomenon of the surfactant species with longer EO chains in interfacial water. These features emphasize the influence of interfacial water on the adsorption of EO fractions from organic solvent. Copyright 2000 Academic Press.  相似文献   

5.
Norton D  Shamsi SA 《Electrophoresis》2004,25(4-5):586-593
Nonionic surfactants such as Triton X-100 (TX-100) are comprised of a mixture of oligomers with a varying degree of length in the ethoxylate chain. The development of chromatographic methods for resolution of the various oligomers of TX-100 is of environmental importance, and can be useful for quality control and characterization in industrial manufacture. Capillary electrochromatography (CEC) is fast becoming a capable separation technique that combines the benefits of both high-performance liquid chromatography (HPLC) and capillary electrophoresis (CE). This report presents a novel CEC method for separation of the various TX-100 oligomers. A comparison of monomeric vs. polymeric stationary phases for separation of TX-100 was conducted. Since the oligomers of TX-100 were better resolved on a monomeric phase as compared to polymeric phase, a systematic mobile phase tuning was performed utilizing a monomeric CEC-C18-3 microm-100 A stationary phase. Various mobile phase parameters such as acetonitrile (ACN) content, Tris concentration, pH, voltage, and temperature were manipulated in order to achieve the optimum separation of oligomers in less than 30 min.  相似文献   

6.
Significant synergistic effects between sodium dodecylbenzene sulfonate (SDBS) and nonionic nonylphenol polyethylene oxyether, Triton X-100 (TX-100), at the oil/water interface have been investigated by experimental methods and computer simulation. The influences of surfactant concentration, salinity, and the ratio of the two surfactants on the interfacial tension were investigated by conventional interfacial tension methods. A dissipative particle dynamics (DPD) method was used to simulate the adsorption properties of SDBS and TX-100 at the oil/water interface. The experiment and simulation results indicate that ultralow (lower than 10(-3) mN m(-1)) interfacial tension can be obtained at high salinity and very low surfactant concentration. Different distributions of surfactants in the interface and the bulk solution corresponding to the change of salinity have been demonstrated by simulation. Also by computer simulation, we have observed that either SDBS or TX-100 is not distributed uniformly over the interface. Rather, the interfacial layer contains large cavities between SDBS clusters filled with TX-100 clusters. This inhomogeneous distribution helps to enhancing our understanding of the synergistic interaction of the different surfactants. The simulation conclusions are consistent with the experimental results.  相似文献   

7.
Formation and structure transition of the complex composed of triblock copolymer F127 and nonionic surfactant TX-100 have been investigated by 1H NMR spectroscopy, dynamic light scattering (DLS), and isothermal titration calorimetry (ITC). Three TX-100 concentration regions are identified, within which TX-100/20 mg/mL F127 complex undergoes different temperature-induced structure transitions. In low concentration region (< 9.42 mM), F127 single molecular species (unimers) wrap around TX-100 micelles forming F127/TX-100 complex with TX-100 micelle as the skeleton at a lower temperature (5 degrees C), and the skeleton transfers to F127 micelle at higher temperature (40 degrees C); in intermediate TX-100 concentration region (9.42-94.85 mM), the skeleton of F127/TX-100 complex transfers from TX-100 micelle successively into F127 micelle and TX-100 micelle again upon heating. The interaction of F127 with TX-100 is saturated in high TX-100 concentration region (> 157.57 mM), and free TX-100 micelles coexist with larger clusters of F127/TX-100 complexes. In addition, TX-100-induced F127/TX-100 complex formation and structure transition are also investigated at constant temperatures. The results show that within 5-10 degrees C, F127 unimers mainly adsorb on the surface of TX-100 micelles just like normal water soluble polymers; in the temperature region of 15-25 degrees C, TX-100 micelles prompts F127 micelle formation. Within 30-40 degrees C, TX-100 inserts into F127 micelles leading to the breakdown of F127 aggregates at higher TX-100 concentrations, and the obtained unimers thread through TX-100 micelles forming complex with TX-100 micelle as skeleton.  相似文献   

8.
Adsorption of Triton X-100 (TX-100) on silica gel has been studied as a function of temperature (308–328 K) and composition for mixtures of water with ethanol or t-butanol. The adsorption capacity of silica gel for TX-100 decreases with increase in alcohol content. Adsorption isotherms of TX-100 on silica gel are four-region and were analyzed using the ARIAN (adsorption isotherm regional analysis) model. Data in regions 2, 3 and 4 were fitted to the Temkin, bilayer and reverse desorption isotherms, respectively. The results show that adsorption of TX-100 on silica gel in water and alcohol-water binary mixtures occurs mainly through formation of monolayer surface aggregates or low bilayer coverage.   相似文献   

9.
The interaction in two mixtures of a nonionic surfactant Triton-X-100 (TX-100) and different ionic surfactants was investigated. The two mixtures were TX-100/sodium dodecyl sulfate (SDS) and TX-100/cetyltrimethylammonium bromide (CTAB) at molar fraction of TX-100, αTX-100 = 0.6. The surface properties of the surfactants, critical micelle concentration (CMC), effectiveness of surface tension reduction (γCMC), maximum surface excess concentration (Γmax), and minimum area per molecule at the air/solution interface (A min) were determined for both individual surfactants and their mixtures. The significant deviations from ideal behavior (attractive interactions) of the nonionic/ionic surfactant mixtures were also determined. Mixtures of both TX-100/SDS and TX-100/CTAB exhibited synergism in surface tension reduction efficiency and mixed micelle formation, but neither exhibited synergism in surface tension reduction effectiveness.  相似文献   

10.
Magnetite nanoparticles coated with silica and hydrophobic octadecyl layers were successfully synthesized and used in magnetic solid phase extraction of tetracyclines from water samples. The magnetite nanoparticles facilitated a convenient magnetic separation of sorbent from an aqueous sample, the octadecyl layer helped to enhance the adsorption ability and the silica layer helped to prevent the aggregation of the magnetite nanoparticles. The effect of various parameters on the extraction efficiency were optimized including the amount of sorbent, sample pH, stirring rate, extraction time and desorption conditions. Under the optimum conditions, the recoveries were in the range of 82 to 88%, the calibration curves were linear over the concentration range of 0.002 to 1.0 μg/mL for oxytetracycline and 0.01 to 1.0 μg/mL for tetracycline and chlortetracycline, respectively. The developed method had several advantages such as simplicity, convenience, cost-effectiveness and high extraction efficiency.  相似文献   

11.
Porous silica hollow particles have been fabricated by a one-step approach in water in oil (W/O) inverse emulsion. Ammonia water droplets stabilized by alkyl-phenol polyoxyethylene ether (TX-4) in tetraethoxysilane (TEOS)/cyclohexane solution act as soft templates for constructing the silica hollow particles. The formation mechanism is discussed in detail from the equilibrium between the diffusion and reactions of TEOS and its products (hydrolysates and polycondensates) on the W/O interface. The structure and morphology of the resultant silica hollow particles are well controlled by changing the parameters involving the concentration of TX-4, TEOS, and ammonia. The synthesized products have been characterized using transmission electron microscopy, scanning electron microscopy, solid state NMR, and nitrogen adsorption–desorption measurements.  相似文献   

12.
An experimental study was performed on aqueous foams stabilized by a mixture of hexadecyltrimethylammonium bromide (HTAB) and negatively-charged silica nanoparticles. The effects of the nanoparticles on the stability of foams at different HTAB concentrations were investigated. The foams were characterized by measuring their foamability and stability. Rheological behavior of the foams was also studied. Furthermore, rheology of the air–water interfaces was studied in the linear and nonlinear deformation ranges. The thickness of the monolayer at the interface was measured. The actual size of the silica nanoparticles at the air–water interface was measured by transmission electron microscopy. Based on these measurements, the interaction between the monolayers across the foam film containing HTAB and nanoparticles was investigated. Smaller silica nanoparticles (i.e. diameter less than 10?nm) adsorbed at the air–water interface whereas the larger particles remained in the sub-phase or in the bulk liquid phase. It was found that these nanoparticles strongly influenced the foaming behavior at the low HTAB concentrations (i.e. below the CMC). A Langmuir-type monolayer was formed. The presence of the nanoparticles at the air–water interface provided mechanical strength to the foam films and prevented their rupture. This hindered coalescence of the bubbles, which resulted in a stable foam.  相似文献   

13.
The measurements of the advancing contact angle for water, glycerol, diiodomethane and aqueous solutions of Triton X-100 (TX-100), Triton X-165 (TX-165), sodium dodecyl sulfate (SDDS), sodium hexadecyl sulfonate (SHDS), cetyltrimethylammonium bromide (CTAB) and cetylpyridinium bromide (CPyB) on quartz surface were carried out. On the basis of the contact angles values obtained for water, glycerol and diiodomethane the values of the Lifshitz–van der Waals component and electron-acceptor and electron-donor parameters of the acid–base component of the surface free energy of quartz were determined. The determined components and parameters of the quartz surface free energy were used for interpretation of the influence of nonionic, anionic and cationic surfactants on the wettability of the quartz. From obtained results it was appeared that the wettability of quartz by nonionic and anionic surfactants practically does not depend on the surfactants concentration in the range corresponding to their unsaturated monolayer at water–air interface and that there is linear dependence between adhesional and surface tension of aqueous solution of these surfactants. This dependence for TX-100, TX-165, SDDS and SHDS can be expressed by lines which slopes are positive. This slope and components of quartz surface free energy indicate that the interaction between the water molecules and quartz surface might be stronger than those between the quartz and surfactants molecules. So, the surface excess of surfactants concentration at the quartz–water interface is probably negative, and the possibility of surfactants to adsorb at the quartz/water film–water interface is higher than at the quartz–water interface. This conclusion is confirmed by the values of the adhesion work of “pure” surfactants, aqueous solutions of surfactants and water to quartz surface. In the case of the cationic surfactants the relationship between adhesional and surface tension is more complicated than that for nonionic and anionic surfactants and indicates that the relationship between the adsorption of the cationic surfactant at water–air and quartz–water interface depends on the concentration of the surfactants in the bulk phase.  相似文献   

14.
Abstract

Interaction between dye (ECAB), nonionic surfactant (TX-100) micelle in aqueous solution and TX-100 hemimicelie at solid (SiO2)/liquid interface has been investigated quantitatively. There are linear relationships between concentrations of free ECAB(Ca), ECAB bound with TX-100 micelles in solution(Cm) and ECAB bound with TX-100 hemimicelles at interface of solid/liquid(Chm). The slopes of the three straight lines are 0.32 for Chm~Ca -1.32 for Cm~Ca and -1.00 for (Cm+Chm~Ca respectively. The linear relationships can be described by three linear equations as follows: Chm=0.32 (Ca?O.88×10?5),Cm.=4.0×10?5-l.33 Ca and Chm+Cm=3.742×l0?5-Ca,. It is inferred that the interaction between ECAB, TX-100 micelles and TX-100 hemimicelles is essentially partition of ECAB molecules in solution, TX-100 micelles and hemimicelles. The concentration of ECAB bound with TX-100 micelles well as electronic repulsion. Additionally, A quantitative method to determine adsorbance of surfactant TX-100 on silica gel by spectroscopy in coadsorption conditions of dye (ECAB) and TX-100 was proposed.  相似文献   

15.
Triton X-100 cerium(IV) phosphate (TX-100CeP) was synthesized and characterized by using IR, X-ray, TGA/DT and the elemental analysis. The chemical stability of TX-100CeP versus the different concentrations of HCl acid was studied before and after its exposure to the radiation dose (30 K Gray). The effect of HCl concentration on separation of Cr(III) from Cr(VI) by using TX-100CeP as surface active ion exchanger was also studied. A novel method was achieved for the quantifying of Cr(III) and Cr(VI) ions by using the high-performance liquid chromatography (HPLC) at wavelength 650 nm, a stationary phase consists of reversed phase column (Nucleosil phenyl column; 250 × 4.6 mm, 5 μm), and a mobile phase consists of 0.001 M di-(2-ethylhexyl) phosphoric acid (DEHPA) in methanol:water (70:30 v/v). The retention times were 7.0 and 8.5 min, for the Cr(III) and Cr(VI), respectively. The exchange capacity of Cr(III) was quantified (2.1 meq/g) onto the TX-100CeP.  相似文献   

16.
We report here a broadband dielectric spectroscopy study on an ionic liquid microemulsion (ILM) composed of water, Triton X-100 (TX-100), and 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF(6)). It is found that the phase behavior of this ILM can be easily identified by its dielectric response. The dielectric behavior of the ILM in the GHz range is consistent with that of TX-100∕water mixtures with comparable water-to-TX-100 weight ratio. It consists of the relaxations due to ethylene oxide (EO) unit relaxation, hydration water dynamics, and∕or free water dynamics. The water content dependence of the EO unit relaxation suggests that this relaxation involves dynamics of hydration water molecules. In the IL-in-water microemulsion phase, it is found that bmimPF(6) molecules are preferentially dissolved in water when their concentration in water is lower than the solubility. An additional dielectric relaxation that is absent in the TX-100∕water mixtures is observed in the frequency range of 10(7)-10(8) Hz for this ILM. This low-frequency relaxation is found closely related to the bmimPF(6) molecule and could be attributed to the hopping of its cations∕anions between the anionic∕cationic sites.  相似文献   

17.
Lateral segregation of lipids and proteins in biological membranes leads to the formation of detergent-resistant domains, also called "rafts". Understanding the mechanisms governing the biomembrane's resistance to solubilization by detergents is crucial in biochemical research. Here, we used real-time atomic force microscopy (AFM) imaging to visualize the behavior of a model supported lipid bilayer in the presence of different Triton X-100 (TX-100) concentrations. Mixed dioleoylphosphatidylcholine/dipalmitoylphosphatidylcholine (DOPC/DPPC) supported bilayers were prepared by vesicle fusion. Real-time AFM imaging revealed that, at concentrations below the critical micelle concentration (CMC), TX-100 did not solubilize the bilayer, but the DPPC domains were eroded in a time-dependent manner. This effect was attributed to the DPPC molecular packing disorganization by the detergent starting from the DOPC/DPPC interface. Just above the CMC, the detergent led to a complete solubilization of the DOPC matrix, leaving the DPPC domains unaltered. At higher TX-100 concentrations, the DOPC was also immediately removed just after detergent addition, and the DPPC domains remaining on the mica surface appeared to be more swollen and were gradually solubilized. This progressive solubilization of the DPPC remaining phase did not start at the edge of the domains but from holes appearing and expanding at the center of DPPC patches. The swelling of the DPPC domains was directly correlated with TX-100 concentration above the CMC and with detergent intercalation between DPPC molecules. We are convinced that this approach will provide a key system to elucidate the physical mechanisms of membrane solubilization by nonionic detergents.  相似文献   

18.
The thermodynamic parameters that govern micelle formation by four different nonionic surfactants were investigated by ITC and DSC. These included n-dodecyldimethylphosphine oxide (APO12), Triton X-100 (TX-100), n-octyltetraoxyethylene (C8E4), and N,N-dimethyloctylamine-N-oxide (DAO8). All of these surfactants had been previously investigated by solution calorimetry over smaller temperature ranges with conflicting conclusions as to the temperature dependence of the heat capacity change, DeltaCp, for the process. The temperature coefficient of the heat capacity change, B (cal/mol K2), was derived from the enthalpy data that were obtained at small intervals over a broad temperature range. The values obtained for each of the surfactants at 298.2 K for DeltaCp and B were -155+/-2 and 0.50+/-0.36 (APO12), -97+/-3 and -0.24+/-0.18 (TX-100), -105+/-2 and 1.0+/-0.3 (C8E4), and -82+/-1 and 0.36+/-0.04 (DAO8), cal/mol K and cal/mol K2, respectively. The resulting B-values did not correlate with the cmc, aggregation number, or structure of the monomer in an obvious way, but they were found to reflect the relative changes in hydration of the polar and nonpolar portions of the surfactant molecule as the micelles are formed. An analysis of the data obtained from DSC scans was used to describe the temperature dependence of the critical micelle concentration, cmc. An abrupt increase in heat capacity was observed for TX-100 and C8E4 solutions of 36.5+/-0.5 and 21+/-5 cal/mol K, respectively, as the temperature of the scan passed through the cloud point. This change in heat capacity may reflect the increased monomer concentration of the solutions that accompanies phase separation, although other interpretations of this jump are possible.  相似文献   

19.
研究了3种不同结构的水溶性阳离子表面活性剂对纳米二氧化硅颗粒的原位表面活性化作用, 它们分别是单头单尾的十六烷基三甲基溴化铵(CTAB)、单头双尾的双十二烷基二甲基溴化铵(di-C12DMAB)和双头双尾的Gemini型阳离子三亚甲基-二(十四酰氧乙基溴化铵)(II-14-3), 并通过测定Zeta电位、吸附等温线及接触角等参数对相关机理进行了阐述. 结果表明, 阳离子表面活性剂吸附到颗粒/水界面形成以疏水基朝向水的单分子层, 从而增强了颗粒表面的疏水性是原位表面活性化的基础. 通过吸附CTAB和II-14-3, 颗粒的疏水性适当增强, 能吸附到正辛烷/水界面稳定O/W(1)型乳状液; 而通过吸附di-C12DMAB所形成的单分子层更加致密, 颗粒的疏水性进一步增强, 进而使乳状液从O/W(1)型转变为W/O型; 当表面活性剂浓度较高时, 由于链-链相互作用, 表面活性剂分子将在颗粒/水界面形成双层吸附, 使颗粒表面变得亲水而失去活性, 但此时体系中游离表面活性剂的浓度已增加到足以单独稳定O/W(2)型乳状液的程度. 因此当采用纳米二氧化硅和di-C12DMAB的混合物作乳化剂时, 通过增加di-C12DMAB的浓度即可诱导乳状液发生O/W(1)→W/O→O/W(2)双重相转变.  相似文献   

20.
The monodisperse superficially porous core-shell silica microspheres (CSSMs) with controllable shell thickness and pore size were synthesized by an improved polymerization-induced colloid aggregation (PICA) approach for fast separation of small solutes and proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号