首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Three different hydrotalcites were synthesized from magnesium ethoxide, and aluminium, gallium and indium acetylacetonate, using the sol–gel technique. The colloid suspensions initially obtained were gelled and separated by centrifugation. XRD diffraction patterns confirmed that all solids thus obtained possessed a hydrotalcite structure. The resulting hydrotalcites were characterized by mid-infrared (MIR) and near-infrared (NIR) spectroscopies. The two types of spectra were found not to depend on the synthetic medium or trivalent metal used and were thus quite similar. The MIR spectra for the three solids included a strong band at 3500–3000 cm−1 due to stretching vibrations of the different types of O–H groups in them. The signal at about 1370 cm−1 observed for all solids indicates that the sole interlayer anion present was carbonate. The NIR spectra exhibited the bands for the first and second overtone of the O–H stretching vibration in addition to various combination bands.  相似文献   

2.
Near-infrared spectroscopy (NIR) has been used to analyse alunites of formula K(Al3+)6(SO4)4(OH)12. Whilst the spectra of the alunites shows a common pattern differences in the spectra are observed which enable the minerals to be distinguished. These differences are attributed to subtle variations in alunite composition. The NIR bands in the 6300-7000 cm(-1) region are attributed to the first fundamental overtone of both the infrared and Raman hydroxyl stretching vibrations. A set of bands are observed in the 4700-5500 cm(-1) region which are assigned to combination bands of the hydroxyl stretching and deformation vibrations. NIR spectroscopy has the ability to distinguish between the alunite minerals even when the formula of the minerals is closely related. The NIR spectroscopic technique has great potential as a mineral exploratory tool on planets and in particular Mars.  相似文献   

3.
Effect of water on the formamide-intercalation of kaolinite   总被引:12,自引:0,他引:12  
The molecular structures of low defect kaolinite completely intercalated with formamide and formamide-water mixtures have been determined using a combination of X-ray diffraction, thermoanalytical techniques, DRIFT and Raman spectroscopy. Expansion of the kaolinite to 10.09 A was observed with subtle differences whether the kaolinite was expanded with formamide or formamide-water mixtures. Thermal analysis showed that greater amounts of formamide could be intercalated into the kaolinite in the presence of water. New infrared bands were observed for the formamide intercalated kaolinites at 3648, 3630 and 3606 cm(-1). These bands are attributed to the hydroxyl stretching frequencies of the inner surface hydroxyls hydrogen bonded to formamide with water, formamide and interlamellar water. Bands were observed at similar positions in the Raman spectrum. At liquid nitrogen temperature, the 3630 cm(-1) Raman band separated into two bands at 3633 and 3625 cm(-1). DRIFT spectra showed the hydroxyl deformation mode at 905 cm(-1). Changes in the molecular structure of the formamide are observed through both the NH stretching vibrations and the amide 1 and 2 bands. Upon intercalation of kaolinite with formamide, bands are observed at 3460, 3344, 3248 and 3167 cm(-1) attributed to the NH stretching vibration of the NH involved with hydrogen bonded to the oxygens of the kaolinite siloxane surface. In the DRIFT spectra of the formamide intercalated kaolinites bands are observed at 1700 and 1671 cm(-1) and are attributed to the amide 1 and amide 2 vibrations.  相似文献   

4.
Hydration of poly(N-vinylcaprolactam) microgels was investigated by near-infrared (NIR) and mid-infrared (MIR) spectroscopy. The thermosensitive microgels were prepared by emulsion polymerization, and turbidity, dynamic light scattering, and differential scanning calorimetry measurements were carried out. In MIR spectra, carbonyl bands consist of three components due to double, single, and zero hydrogen-bonding carbonyl groups as verified by density functional theory calculations. The relative intensities changed critically at the volume phase transition temperature upon heating. In NIR spectra, two absorbance peaks around 5,900?cm?1 were observed, which can be assigned to the first overtone of C–H bands. Both of them undergo red shifts during the phase transition in a similar way to that of fundamental bands in MIR spectra. The result suggests that NIR spectroscopy may be a new general method that can provide new information for research on hydration of thermosensitive microgels.  相似文献   

5.
Near-infrared (NIR) spectroscopy has been used to analyse a suite of synthesised jarosites of formula Mn(Fe3+)6(SO4)4(OH)12 where M is K, Na, Ag, Pb, NH4+ and H3O+. Whilst the spectra of the jarosites show a common pattern, differences in the spectra are observed which enable the minerals to be distinguished. The NIR bands in the 6300-7000 cm-1 region are attributed to the first fundamental overtone of the infrared and Raman hydroxyl stretching vibrations. The NIR spectrum of the ammonium-jarosite shows additional bands at 6460 and 6143 cm-1, attributed to the first fundamental overtones of NH stretching vibrations. A set of bands are observed in the 4700-5500 cm-1 region which are assigned to combination bands of the hydroxyl stretching and deformation vibrations. The ammonium-jarosite shows additional bands at 4730 and 4621 cm-1, attributed to the combination of NH stretching and bending vibrations. NIR spectroscopy has the ability to distinguish between the jarosite minerals even when the formula of the minerals is closely related. The NIR spectroscopic technique has great potential as a mineral exploratory tool on planets and in particular Mars.  相似文献   

6.
The development of new materials for water purification is of universal importance. Among these types of materials are layered double hydroxides (LDHs). Non-ionic materials pose a significant problem as pollutants. The interaction of methyl orange (MO) and acidic scarlet GR (GR) adsorption on hydrocalumite (Ca/Al-LDH-Cl) was studied by X-ray diffraction (XRD), infrared spectroscopy (MIR), scanning electron microscope (SEM), and near-infrared spectroscopy (NIR). The XRD results revealed that the basal spacing of Ca/Al-LDH-MO was expanded to 2.45 nm, and the MO molecules were intercalated with a interpenetrating bilayer model in the gallery of LDH, with 49° tilting angle. Yet, Ca/Al-LDH-GR was kept the same d-value as Ca/Al-LDH-Cl. The NIR spectrum for Ca/Al-LDH-MO showed a prominent band around 5994 cm(-1), assigned to the combination result of the NH stretching vibrations, which was considered as a mark to assess MO(-) ion intercalation into Ca/Al-LDH-Cl interlayers. From SEM images, the particle morphology of Ca/Al-LDH-MO mainly changed to irregular platelets, with a "honey-comb" like structure. Yet, the Ca/Al-LDH-GR maintained regular hexagon platelets, which was similar to that of Ca/Al-LDH-Cl. All results indicated that MO(-) ion was intercalated into Ca/Al-LDH-Cl interlayers, and acidic scarlet GR was only adsorbed upon Ca/Al-LDH-Cl surfaces.  相似文献   

7.
Disease or injury to articular cartilage results in loss of extracellular matrix components which can lead to the development of osteoarthritis (OA). To better understand the process of disease development, there is a need for evaluation of changes in cartilage composition without the requirement of extensive sample preparation. Near infrared (NIR) spectroscopy is a chemical investigative technique based on molecular vibrations that is increasingly used as an assessment tool for studying cartilage composition. However, the assignment of specific molecular vibrations to absorbance bands in the NIR spectrum of cartilage, which arise from overtones and combinations of primary absorbances in the mid infrared (MIR) spectral region, has been challenging. In contrast, MIR spectroscopic assessment of cartilage is well-established, with many studies validating the assignment of specific bands present in MIR spectra to specific molecular vibrations. In the current study, NIR imaging spectroscopic data were obtained for compositional analysis of tissues that served as an in vitro model of OA. MIR spectroscopic data obtained from the identical tissue regions were used as the gold-standard for collagen and proteoglycan (PG) content. MIR spectroscopy in transmittance mode typically requires a much shorter pathlength through the sample (≤10 microns thick) compared to NIR spectroscopy (millimeters). Thus, this study first addressed the linearity of small absorbance bands in the MIR region with increasing tissue thickness, suitable for obtaining a signal in both the MIR and NIR regions. It was found that the linearity of specific, small MIR absorbance bands attributable to the collagen and PG components of cartilage (at 1336 and 856 cm−1, respectively) are maintained through a thickness of 60 μm, which was also suitable for NIR data collection. MIR and NIR spectral data were then collected from 60 μm thick samples of cartilage degraded with chondroitinase ABC as a model of OA. Partial least squares (PLS) regression using NIR spectra as input predicted the MIR-determined compositional parameters of PG/collagen within 6% of actual values. These results indicate that NIR spectral data can be used to assess molecular changes that occur with cartilage degradation, and further, the data provide a foundation for future clinical studies where NIR fiber optic probes can be used to assess the progression of cartilage degradation.  相似文献   

8.
Multivariate regression based on partial least squares (PLS2) was applied to estimating one spectral dataset from another set having an intrinsic relationship with each other. An estimation was successfully carried out between mid-infrared (IR) spectra in the range of 2980 - 3800 cm(-1) and that of near-infrared (NIR) spectra in the range of 6000 - 7500 cm(-1) for hexafluoroisopropanol (HFIP)-water mixtures. The result demonstrates that, after building a suitable regression model, not only NIR spectra, but also well-resolved IR spectra of HFIP-water mixture can be estimated properly in this way. The use of IR and NIR spectroscopy together with PLS2 regression will not only alleviate laborious and costly measurements, but also open a way to provide easier assignments of generally weak and highly overlapped NIR spectral bands.  相似文献   

9.
The behavior of the hydroxyl units of synthetic goethite and its dehydroxylated product hematite was characterized using a combination of Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) during the thermal transformation over a temperature range of 180-270 degrees C. Hematite was detected at temperatures above 200 degrees C by XRD while goethite was not observed above 230 degrees C. Five intense OH vibrations at 3212-3194, 1687-1674, 1643-1640, 888-884 and 800-798 cm(-1), and a H2O vibration at 3450-3445 cm(-1) were observed for goethite. The intensity of hydroxyl stretching and bending vibrations decreased with the extent of dehydroxylation of goethite. Infrared absorption bands clearly show the phase transformation between goethite and hematite: in particular. the migration of excess hydroxyl units from goethite to hematite. Two bands at 536-533 and 454-452 cm(-1) are the low wavenumber vibrations of Fe-O in the hematite structure. Band component analysis data of FTIR spectra support the fact that the hydroxyl units mainly affect the a plane in goethite and the equivalent c plane in hematite.  相似文献   

10.
The modification of kaolinite surfaces through mechanochemical treatment has been studied using a combination of mid-IR and near-IR spectroscopy. Kaolinite hydroxyls were lost after 10 h of grinding as evidenced by the decrease in intensity of the OH stretching vibrations at 3695 and 3619 cm(-1) and the deformation modes at 937 and 915 cm(-1). Concomitantly an increase in the hydroxyl-stretching vibrations of water is observed. The mechanochemical activation (dry grinding) causes destruction in the crystal structure of kaolinite by the rupture of the O-H, Al-OH, Al-O-Si and Si-O bonds. Evidence of this destruction may be followed using near-IR spectroscopy. Two intense bands are observed in the spectral region of the first overtone of the hydroxyl-stretching vibration at 7065 and 7163 cm(-1). These two bands decrease in intensity with mechanochemical treatment and two new bands are observed at 6842 and 6978 cm(-1) assigned to the first overtone of the hydroxyl-stretching band of water. Concomitantly the water combination bands observed at 5238 and 5161 cm(-1) increase in intensity with mechanochemical treatment. The destruction of the kaolinite surface may be also followed by the loss of intensity of the two hydroxyl combination bands at 4526 and 4623 cm(-1). Infrared spectroscopy shows that the kaolinite surface has been modified by the removal of the kaolinite hydroxyls and their replacement with water adsorbed on the kaolinite surface. NIR spectroscopy enables the determination of the optimum time for grinding of the kaolinite. Further NIR allows the possibility of continual on-line analysis of the mechanochemical treatment of kaolinite.  相似文献   

11.
Near-infrared (NIR) and mid-infrared (MIR) spectroscopy have been compared and evaluated for the determination of the distillation property of kerosene with the use of partial least squares (PLS) regression. Since kerosene is a complex mixture of similar hydrocarbons, both spectroscopic methods will be best evaluated with this complex sample matrix. PLS calibration models for each percent recovery temperature have been developed by using both NIR and MIR spectra without spectral pretreatment. Both methods have shown good correlation with the corresponding reference method, however NIR provided better calibration performance over MIR. To rationalize the improved calibration performance of NIR, spectra of the same kerosene sample were continuously collected and the corresponding spectral reproducibility was evaluated. The greater spectral reproducibility including signal-to-noise ratio of NIR led to the improved calibration performance, even though MIR spectroscopy provided more qualitative spectral information. The reproducibility of measurement, signal-to-noise ratio, and richness of qualitative information should be simultaneously considered for proper selection of a spectroscopic method for quantitative analysis.  相似文献   

12.
Raman spectroscopy of newberyite, hannayite and struvite   总被引:1,自引:0,他引:1  
The phosphate minerals hannayite, newberyite and struvite have been studied by Raman spectroscopy using a thermal stage. Hannayite and newberyite are characterised by an intense band at around 980cm(-1) assigned to the v(1) symmetric stretching vibration of the HPO(4) units. In contrast the symmetric stretching mode is observed at 942cm(-1) for struvite. The Raman spectra are characterised by multiple v(3) anti-symmetric stretching bands and v(2) and v(4) bending modes indicating strong distortion of the HPO(4) and PO(4) units. Hannayite and newberyite are defined by bands at 3382 and 3350cm(-1) attributed to HOPO(3) vibrations and hannayite and struvite by bands at 2990, 2973 and 2874 assigned to NH(4)(+) bands. Raman spectroscopy has proven most useful for the analysis of these 'cave' minerals where complex paragenetic relationships exist between the minerals.  相似文献   

13.
The IR spectra for various sizes of pyrrole clusters were measured in the NH stretching vibration region by infrared cavity ringdown spectroscopy. The hydrogen-bonded structures and normal modes of the pyrrole clusters were analyzed by a density functional theory calculation of the B3LYP/6-311+G(d,p) level. Two types of pulsed nozzles, a slit and a large pinhole, were used to generate different cluster size distributions in a supersonic jet. A rotational contour analysis of the NH stretching vibration for the monomer revealed that the slit nozzle provides a warmer jet condition than the pinhole one. The IR spectra, measured under the warmer condition, showed the intense bands at 3444, 3392, and 3382 cm(-1), which were assigned to hydrogen-bonded NH stretching vibrations due to the dimer, the trimer, and the tetramer, respectively. On the other hand, the IR spectra measured under a lower temperature condition by a pinhole nozzle showed a broad absorption feature in addition to sharp bands. This broad absorption was reproduced by the sum of two Gaussians peaks at 3400 and 3372 cm(-1) with widths of 30 and 50 cm(-1) (FWHM), respectively. Compared with the spectra of the condensed phase, two bands at 3400 and 3372 cm(-1) were assigned to hydrogen-bonded NH stretching vibrations of larger clusters having liquid-like and solid-like structures, respectively.  相似文献   

14.
The intercalation of organic polymers molecules (i.e., PEGs and BRIJ) into a standard Ca-montmorillonite has been studied by XRD, TG, and IR spectroscopy. The polymer intercalation is confirmed by the increasing of the d(001) in XRD spectra as well as by the complex multisteps thermal decomposition behavior of the organo-clay materials. Mid-IR and diffuse reflectance near-IR spectra of the intercalated materials show the polymer diagnostic bands (CH stretching and deformation mode), shifted or changed in shape by the interaction with the clay matrix. Both PEG 1500 and PEG 4000 based materials are likely intercalated in an extended configuration, similar to the amorphous polymer form. BRIJ intercalated polymer spectra suggest the disordered conformation of the alkilic chain in a prevailing "gauche", poorly packed, conformation. Host montmorillonite IR bands, mainly OH and water stretching and deformation fundamentals, combination, and overtone bands, are reduced in intensity by polymer intercalation, pointing out an interaction, likely through H-bonding and/or a possible substitution of cations hydration water molecules.  相似文献   

15.
Mid-infrared (MIR) and near-infrared (NIR) spectra of crystalline menadione (vitamin K3) were measured and analyzed with aid of quantum chemical calculations. The calculations were carried out using the harmonic approach for the periodic model of crystal lattice and the anharmonic DVPT2 calculations applied for the single molecule model. The theoretical spectra accurately reconstructed the experimental ones permitting for reliable assignment of the MIR and NIR bands. For the first time, a detailed analysis of the NIR spectrum of a molecular system based on a naphthoquinone moiety was performed to elucidate the relationship between the chemical structure of menadione and the origin of the overtones and combination bands. In addition, the importance of these bands during interpretation of the MIR spectrum was demonstrated. The overtones and combination bands contribute to 46.4% of the total intensity of menadione in the range of 3600–2600 cm−1. Evidently, these bands play a key role in shaping of the C-H stretching region of MIR spectrum. We have shown also that the spectral regions without fundamentals may provide valuable structural information. For example, the theoretical calculations reliably reconstructed numerous overtones and combination bands in the 4000–3600 and 2800–1800 cm−1 ranges. These results, provide a comprehensive origin of the fundamentals, overtones and combination bands in the NIR and MIR spectra of menadione, and the relationship of these spectral features with the molecular structure.  相似文献   

16.
The structure of the hydrotalcite desautelsite Mg6Mn2CO3(OH)16.4H2O has been studied by a combination of Raman and infrared spectroscopy. Three intense Raman bands are observed at 1086, 1062 and 1055 cm(-1). A model based upon the observation of three CO3 stretching vibrations is presented. The CO3 anion may be (a) non-hydrogen bonded, (b) hydrogen bonded to the interlayer water and (c) hydrogen bonded to the brucite-like hydroxyl surface. Two intense bands at 3646 and 3608 cm(-1) are attributed to MgOH and MnOH stretching vibrations. Infrared bands at 3476, 3333, 3165 and 2991 cm(-1) are assigned to water stretching bands. Raman spectroscopy has proven a powerful tool for the study of hydrotalcite minerals.  相似文献   

17.
In this work, mid-infrared (MIR), Raman and near-infrared (NIR) spectroscopies were evaluated and compared for characterization and determination of the compositions in poly(lactic acid)/poly(propylene carbonate)/poly(butylene adipate-co-terephthalate) (PLA/PPC/PBAT) blends via chemometrics. Qualitative analysis of MIR, Raman, and NIR spectra of the three compositions was performed. Partial least squares (PLS) models were developed based on each spectroscopy for quantitative determination of the concentrations. The data suggested that MIR and Raman have an advantage over NIR in terms of qualitative recognition of the three compositions. The data also showed that Raman and NIR succeeded in determining the concentrations, while the concentration determined via MIR was inaccurate. Hence, Raman is the optimal analytical tool for qualitative characterization and quantitative determination of the compositions in fully biodegradable PLA/PPC/PBAT blends. The characteristic bands in the Raman spectra clearly identify PLA, PPC, and PBAT to be 392 cm?1 (δ CCO), 948 cm?1 (ν C?O?C) and 1600 cm?1 (ν C ? C in benzene ring), respectively. The optimal calibration models based on Raman for PLA, PPC, and PBAT exhibited root mean square error of prediction (RMSEP) values of 3.140%, 3.576%, and 2.538%, respectively.  相似文献   

18.
Zinc phosphates are important in the study of the phosphatisation of metals. Raman spectroscopy in combination with infrared spectroscopy has been used to characterise the zinc phosphate minerals. The minerals may be characterised by the patterns of the hydroxyl stretching vibrations in both the Raman and infrared spectra. Spencerite is characterised by a sharp Raman band at 3516 cm(-1) and tarbuttite by a single band at 3446 cm(-1). The patterns of the Raman spectra of the hydroxyl stretching region of hopeite and parahopeite are different in line with their differing crystal structures. The Raman spectrum of the PO4 stretching region shows better band separated peaks than the infrared spectra which consist of a complex set of overlapping bands. The position of the PO4 symmetric stretching mode can be used to identify the zinc phosphate mineral. It is apparent that Raman spectroscopy lends itself to the fundamental study of the evolution of zinc phosphate films.  相似文献   

19.
A comparison is made between the Raman and infrared spectra of ferruginous smectite and a nontronite using both absorption and emission techniques. Raman spectra show hydroxyl stretching bands at 3572, 3434, 3362, 3220 and 3102 cm(-1). The infrared emission spectra of the hydroxyl stretching region are significantly different to the absorption spectrum. These differences are attributed to the loss of water, absent in the emission spectrum, the reduction of the samples in the spectrometer and possible phase changes. Dehydroxylation of the two minerals may be followed by the loss of intensity of the hydroxyl stretching and hydroxyl deformation frequencies. Hydroxyl deformation modes are observed at 873 and 801 cm(-1) for the ferruginous smectite, and at 776 and 792 cm(-1) for the nontronite. Raman hydroxyl deformation vibrations are found at 879 cm(-1). Other Raman bands are observed at 1092 and 1032 cm(-1), assigned to the SiO stretching vibrations, at 675 and 587 cm(-1), assigned to the hydroxyl translation vibrations, at 487 and 450 cm(-1), attributed to OSiO bending type vibrations, and at 363, 287 and 239 cm(-1). The differences in the molecular structure of the two minerals are attributed to the Al/Fe ratio in the minerals.  相似文献   

20.
An Mg/Al layered double hydroxide (LDH) containing carbonate ion in its interlayer region was examined by medium infrared (MIR) and near infrared reflectance spectroscopy (NIRS). The MIR and NIR spectroscopy techniques was also used to study two organo-hybrid LDHs containing interlayer dodecylbenzenesulphonate (DBS) and dodecylsulphate (DS) ions, respectively. The NIR spectra for the latter solids were found to exhibit the overtone and combination bands for the hydroxyl groups in addition to those typical bands of the organic host functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号