首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The electronic and vibrational structure of beta-carotene's early excited states are examined using femtosecond time-resolved stimulated Raman spectroscopy. The vibrational spectrum of the short-lived ( approximately 160 fs) second excited singlet state (S(2),1B(u) (+))of beta-carotene is obtained. Broad, resonantly enhanced vibrational features are observed at approximately 1100, 1300, and 1650 cm(-1) that decay with a time constant corresponding to the electronic lifetime of S(2). The temporal evolution of the vibrational spectra are consistent with significant population of only two low-lying excited electronic states (1B(u) (+) and 2A(g) (-)) in the ultrafast relaxation pathway of beta-carotene.  相似文献   

2.
The ultrafast relaxation of aqueous iron(II)-tris(bipyridine) upon excitation into the singlet metal-to-ligand charge-transfer band (1MLCT) has been characterized by femtosecond fluorescence up-conversion and transient absorption (TA) studies. The fluorescence experiment shows a very short-lived broad 1MLCT emission band at approximately 600 nm, which decays in < or =20 fs, and a weak emission at approximately 660 nm, which we attribute to the 3MLCT, populated by intersystem crossing (ISC) from the 1MLCT state. The TA studies show a short-lived (<150 fs) excited-state absorption (ESA) below 400 nm, and a longer-lived one above 550 nm, along with the ground-state bleach (GSB). We identify the short-lived ESA as being due to the 3MLCT state. The long-lived ESA decay and the GSB recovery occur on the time scale of the lowest excited high-spin quintet state 5T2 lifetime. A singular value decomposition and a global analysis of the TA data, based on a sequential relaxation model, reveal three characteristic time scales: 120 fs, 960 fs, and 665 ps. The first is the decay of the 3MLCT, the second is identified as the population time of the 5T2 state, while the third is its decay time to the ground state. The anomalously high ISC rate is identical in [RuII(bpy)3]2+ and is therefore independent of the spin-orbit constant of the metal atom. To reconcile these rates with the regular quasi-harmonic vibrational progression of the 1MLCT absorption, we propose a simple model of avoided crossings between singlet and triplet potential curves, induced by the strong spin-orbit interaction. The subsequent relaxation steps down to the 5T2 state dissipate approximately 2000 cm-1/100 fs. This rate is discussed, and we conclude that it nevertheless can be described by the Fermi golden rule, despite its high value.  相似文献   

3.
The primary photophysical and photochemical processes in the photochemistry of 1-acetoxy-2-methoxyanthraquinone (1a) were studied using femtosecond transient absorption spectroscopy. Excitation of 1a at 270 nm results in the population of a set of highly excited singlet states. Internal conversion to the lowest singlet npi* excited state, followed by an intramolecular vibrational energy redistribution (IVR) process, proceeds with a time constant of 150 +/- 90 fs. The 1npi* excited state undergoes very fast intersystem crossing (ISC, 11 +/- 1 ps) to form the lowest triplet pipi* excited state which contains excess vibrational energy. The vibrational cooling occurs somewhat faster (4 +/- 1 ps) than ISC. The primary photochemical process, migration of acetoxy group, proceeds on the triplet potential energy surface with a time constant of 220 +/- 30 ps. The transient absorption spectra of the lowest singlet and triplet excited states of 1a, as well as the triplet excited state of the product, 9-acetoxy-2-methoxy-1,10-anthraquinone (2a), were detected. The assignments of the transient absorption spectra were supported by time-dependent DFT calculations of the UV-vis spectra of the proposed intermediates. All of the stationary points for acyl group migration on the triplet and ground state singlet potential energy surfaces were localized, and the influence of the acyl group substitution on the rate constants of the photochemical and thermal processes was analyzed.  相似文献   

4.
Analysis of variable-temperature fluorescence quantum yield and lifetime data for per(difluoroboro)tetrakis(pyrophosphito)diplatinate(II) ([Pt(2)(μ-P(2)O(5)(BF(2))(2))(4)](4-), abbreviated Pt(pop-BF(2))), yields a radiative decay rate (k(r) = 1.7 × 10(8) s(-1)) an order of magnitude greater than that of the parent complex, Pt(pop). Its temperature-independent and activated intersystem crossing (ISC) pathways are at least 18 and 142 times slower than those of Pt(pop) [ISC activation energies: 2230 cm(-1) for Pt(pop-BF(2)); 1190 cm(-1) for Pt(pop)]. The slowdown in the temperature-independent ISC channel is attributed to two factors: (1) reduced spin-orbit coupling between the (1)A(2u) state and the mediating triplet(s), owing to increases of LMCT energies relative to the excited singlet; and (2) diminished access to solvent, which for Pt(pop) facilitates dissipation of the excess energy into solvent vibrational modes. The dramatic increase in E(a) is attributed to increased P-O-P framework rigidity, which impedes symmetry-lowering distortions, in particular asymmetric vibrations in the Pt(2)(P-O-P)(4) core that would allow direct (1)A(2u)-(3)A(2u) spin-orbit coupling.  相似文献   

5.
Ultrafast electronic-vibrational relaxation upon excitation of the singlet charge-transfer b (1)A' state of [Re(L)(CO) 3(bpy)] ( n ) (L = Cl, Br, I, n = 0; L = 4-Et-pyridine, n = 1+) in acetonitrile was investigated using the femtosecond fluorescence up-conversion technique with polychromatic detection. In addition, energies, characters, and molecular structures of the emitting states were calculated by TD-DFT. The luminescence is characterized by a broad fluorescence band at very short times, and evolves to the steady-state phosphorescence spectrum from the a (3)A" state at longer times. The analysis of the data allows us to identify three spectral components. The first two are characterized by decay times tau 1 = 85-150 fs and tau 2 = 340-1200 fs, depending on L, and are identified as fluorescence from the initially excited singlet state and phosphorescence from a higher triplet state (b (3)A"), respectively. The third component corresponds to the long-lived phosphorescence from the lowest a (3)A" state. In addition, it is found that the fluorescence decay time (tau 1) corresponds to the intersystem crossing (ISC) time to the two emissive triplet states. tau 2 corresponds to internal conversion among triplet states. DFT results show that ISC involves electron exchange in orthogonal, largely Re-localized, molecular orbitals, whereby the total electron momentum is conserved. Surprisingly, the measured ISC rates scale inversely with the spin-orbit coupling constant of the ligand L, but we find a clear correlation between the ISC times and the vibrational periods of the Re-L mode, suggesting that the latter may mediate the ISC in a strongly nonadiabatic regime.  相似文献   

6.
A combination of picosecond time-resolved infrared spectroscopy, picosecond transient absorption spectroscopy, and nanosecond flash photolysis was used to elucidate the nature and dynamics of a manifold of the lowest excited states in Pt(phen-NDI)Cl 2 ( 1), where NDI = strongly electron accepting 1,4,5,8-naphthalene-diimide group. 1 is the first example of a Pt (II)-diimine-diimide dyad. UV/vis/IR spectroelectrochemistry and EPR studies of electrochemically generated anions confirmed that the lowest unoccupied molecular orbital (LUMO) in this system is localized on the NDI acceptor group. The lowest allowed electronic transition in Pt(phen-NDI)Cl 2 is charge-transfer-to-diimine of a largely Pt-->phen metal-to-ligand charge-transfer (MLCT) character. Excitation of 1 in the 355-395 nm range initiates a series of processes which involve excited states with the lifetimes of 0.9 ps ( (1)NDI*), 3 ps ( (3)MLCT), 19 ps (vibrational cooling of "hot" (3)NDI and of "hot" NDI ground state), and 520 mus ( (3)NDI). Excitation of 1 with 395 nm femtosecond laser pulses populates independently the (1)MLCT and the (1)NDI* excited states. A thermodynamically possible decay of the initially populated (1)MLCT to the charge-transfer-to-NDI excited state, [Pt (III)(phen-NDI (-*))Cl 2], is not observed. This finding could be explained by an ultrafast ISC of the (1)MLCT to the (3)MLCT state which lies about 0.4 eV lower in energy than [Pt (III)(phen-NDI (-*))Cl 2]. The predominant decay pathway of the (3)MLCT is a back electron transfer process with approximately 3 ps lifetime, which also causes partial population of the vibrationally hot ground state of the NDI fragment. The decay of the (1)NDI* state in 1 populates vibrationally hot ground state of the NDI, as well as vibrationally hot (3)NDI. The latter relaxes to form (3)NDI state, that is, [Pt(phen- (3)NDI)Cl 2]*, which possesses a remarkably long lifetime for a Pt (II) complex in fluid solution of 520 mus. The IR signature of this excited state includes the nu(CO) bands at 1607 and 1647 cm (-1), which are shifted considerably to lower energies if compared to their ground-state counterparts. The assignment of the vibrational bands is supported by the density-functional theory calculations in CH 2Cl 2. Pt(phen-NDI)Cl 2 acts as a modest photosensitizer of singlet oxygen.  相似文献   

7.
Employing femtosecond pulse-shaping techniques we investigate ultrafast, coherent and incoherent dynamics in single molecules at room temperature. In first experiments single molecules are excited into their purely electronic 0-0 transition by phase-locked double-pulse sequences with pulse durations of 75 fs and 20 nm spectral band width. Their femtosecond kinetics can then be understood in terms of a 2-level system and modelled with the optical Bloch equations. We find that we observe the coherence decay in single molecules, and the purely electronic dephasing times can be retrieved directly in the time domain. In addition, the Rabi-frequencies and thus the transition dipole moments of single molecules are determined from these data. Upon excitation of single molecules into a vibrational level of the electronically excited state also incoherent intra-molecular vibrational relaxation is recorded. Increasing the spectral band width of the excitation pulses to up to 120 nm (resulting in a transform-limited pulse width of 15 fs) coherent superpositions of excited state vibrational modes, i.e. vibrational wave packets, are excited. The wave-packet oscillations in the excited state potential energy surface are followed in time by a phase-controlled pump-probe scheme, which permits to record wave packet interference, and to determine the energies of vibrational modes and their coupling strengths to the electronic transition.  相似文献   

8.
Molecular vibration and rotation play a significant role in the intramolecular photoexcitation dynamics of the so-called intermediate-case molecule, and the fluorescence intensity, decay and polarization of s-triazine vapor are shown to depend on the excited rovibronic level of the S1 state. Fluorescence characteristics are interpreted by assuming three zero-order states: (1) a zero-order singlet state that carries the absorption intensity and emits fluorescence with sharp structure; (2) zero-order singlet states that do not carry the absorption intensity but emit broad fluorescence; and (3) zero-order triplet states. The interaction among these states depends not only on the vibrational level but also on the rotational level excited. It is suggested that the number of triplet states coupled to the singlet state increases with increasing excess vibrational energy. It is also suggested that K-scrambling occurs both in the triplet manifold following intersystem crossing (ISC) and in the singlet manifold following intramolecular vibrational energy redistribution (IVR). The fluorescence intensity and decay of s-triazine vapor are significantly influenced by a magnetic field, and the field effects are interpreted in terms of the spin decoupling in the triplet manifold following ISC; the role of external magnetic fields is to mix the spin sublevels of different rovibronic levels coupled to the excited singlet state. Magnetic depolarization of fluorescence also occurs because of the efficient interaction between the excited singlet state and the triplet state.  相似文献   

9.
The dynamics of the excited states of 1-(p-nitrophenyl)-2-(hydroxymethyl)pyrrolidine (p-NPP) has been investigated using the subpicosecond transient absorption spectroscopic technique in different kinds of solvents. Following photoexcitation using 400 nm light, conformational relaxation via twisting of the nitro group, internal conversion (IC) and the intersystem crossing (ISC) processes have been established to be the three major relaxation pathways responsible for the ultrafast deactivation of the excited singlet (S(1)) state. Although the nitro-twisting process has been observed in all kinds of solvents, the relative probability of the occurrence of the other two processes has been found to be extremely sensitive to solvent polarity, because of alteration of the relative energies of the S(1) and the triplet (T(n)) states. In the solvents of lower polarity, the ISC is predominant over the IC process, because of near isoenergeticity of the S(1)(ππ*) and T(3)(nπ*) states. On the other hand, in the solvents of very large polarity, the energy of the S(1)(ππ*) state becomes lower than those of both the T(3)(nπ*) and T(2)(nπ*/ππ*) states, but those of the T(1)(ππ*) state and the IC process to the ground electronic (S(0)) state are predominant over the ISC, and hence the triplet yield is nearly negligible. However, in the solvents of medium polarity, the S(1) and T(2) states become isoenergetic and the deactivation of the S(1) state is directed to both the IC and ISC channels. In the solvents of low and medium polarity, following the ISC process, the excited states undergo IC, vibrational relaxation, and solvation in the triplet manifold. On the other hand, following the IC process in the Franck-Condon region of the S(0) state, the vibrationally hot molecules with the twisted nitro group subsequently undergo the reverse nitro-twisting process via dissipation of the excess vibrational energy to the solvent or vibrational cooling.  相似文献   

10.
A series of newly synthesized Os(II) and Ag(I) complexes exhibit remarkable ratiometric changes of intensity for phosphorescence versus fluorescence that are excitation wavelength dependent. This phenomenon is in stark contrast to what is commonly observed in condensed phase photophysics. While the singlet to triplet intersystem crossing (ISC) for the titled complexes is anomalously slow, approaching several hundred picoseconds in the lowest electronic excited state (S(1) → T(1)), higher electronic excitation leads to a much accelerated rate of ISC (10(11)-10(12) s(-1)), which is competitive with internal conversion and/or vibrational relaxation, as commonly observed in heavy transition metal complexes. The mechanism is rationalized by negligible metal d orbital contribution in the S(1) state for the titled complexes. Conversely, significant ligand-to-metal charge transfer character in higher-lying excited states greatly enhances spin-orbit coupling and hence the ISC rate. The net result is to harvest high electronically excited energy toward triplet states, enhancing the phosphorescence.  相似文献   

11.
Coherence in the metal-metal-to-ligand-charge transfer (MMLCT) excited state of diplatinum molecule [Pt(ppy)(μ-(t)Bu(2)pz)](2) has been investigated through the observed oscillatory features and their corresponding frequencies as well as polarization dependence in the single-wavelength transient absorption (TA) anisotropy signals. Anticorrelated parallel and perpendicular TA signals with respect to the excitation polarization direction were captured, while minimal oscillatory features were observed in the magic angle TA signal. The combined analysis of the experimental results coupled with those previous calculated in the literature maps out a plausible excited state trajectory on the potential energy surface, suggesting that (1) the two energetically close MMLCT excited states due to the symmetry of the molecule may be electronically and coherently coupled with the charge density shifting back and forth between the two phenylpyridine (ppy) ligands, (2) the electronic coupling strength in the (1)MMLCT and (3)MMLCT states may be extracted from the oscillation frequencies of the TA signals to be 160 and 55 cm(-1), respectively, (3) a stepwise intersystem crossing cascades follows (1)MMLCT → (3)MMLCT (T(1b)) → (3)MMLCT (T(1a)), and (4) a possible electronic coherence can be modulated via the Pt-Pt σ-interactions over a picosecond and survive the first step of intersystem crossing. Future experiments are in progress to further investigate the origin of the oscillatory features. These experimental observations may have general implications in design of multimetal center complexes for photoactivated reactions where coherence in the excited states may facilitate directional charge or energy transfer along a certain direction between different parts of a molecule.  相似文献   

12.
Ultrafast photolysis of p-biphenylyldiazoethane (BDE) produces an excited state of the diazo compound in acetonitrile, cyclohexane, and methanol with lambdamax = 490 nm and lifetimes of less than 300 fs. The decay of the diazo excited state correlates with the growth of singlet carbene absorption at 360 nm. The optical yields of diazo excited states produced by photolysis of p-biphenylyldiazomethane (BDM) and BDE are the same; however, the optical yield of singlet p-biphenylylmethylcarbene (1BpCMe) is 30-40% less than that of p-biphenylylcarbene (1BpCH) in all three solvents. The results are explained by rearrangement in the excited state (RIES) of BDE to form p-vinylbiphenyl (VB) in parallel with extrusion of nitrogen to form 1BpCMe in reduced yield. This interpretation is consistent with product studies (ethanol-OD in cyclohexane) which indicate that there is an approximately 25% yield of VB that is formed by a mechanism that bypasses the relaxed singlet carbene. The decay of 1BpCMe is biexponential, and that of 1BpCH is monoexponential. This is attributed either to efficient relaxation of vibrationally excited 1BpCMe by 1,2 migration of hydrogen to form VB (minor) or to the increased number of low-frequency vibrational modes provided by the methyl group (major). A methyl group retards the rate of intersystem crossing (ISC), relative to a hydrogen atom, and ISC is more rapid in nonpolar solvents. Reaction of 1BpCMe with methanol is much faster than spin equilibration. Both the lifetime of 1BpCMe and 1BpCH are the same in cyclohexane and in cyclohexane-d12. This demonstrates that spin equilibration is faster than reaction of either carbene with the solvent. The lifetimes of 1BpCMe and 1BpCMe-d3 are the same in cyclohexane. This indicates that 1,2 hydrogen migration of 1BpCMe to form VB is slower than spin equilibration in cyclohexane. In acetonitrile, however, the lifetime of 1BpCMe-d3 is 1.5 times longer than that of 1BpCMe in the same solvent. Thus, in acetonitrile, where ISC is slow, the rate of 1,2 hydrogen shift of 1BpCMe is competitive with ISC. In cyclohexene, the lifetime of 1BpCH is shortened relative to that in cyclohexane. The lifetime of 1BpCMe is the same in cyclohexene and cyclohexane. The data indicate that spin relaxation is slow relative to reaction of 1BpCH with neat alkene but that spin relaxation is fast for 1BpCMe relative to reaction with neat cyclohexene.  相似文献   

13.
We report the relaxation times of electronic and vibrational coherence in the cyanine dye 1,1′,3,3,3′,3′‐hexamethyl‐4,4′,5,5′‐dibenzo‐2,2′‐indotricarbocyanine, measured using a 7.1 fs pulsed laser. The vibrational phase relaxation times are found to be between 380 and 680 fs in the ground and lowest excited singlet states. The vibrational dephasing times of the 294, 446, and 736 cm?1 modes are relatively long among the six modes associated with excited‐state wave packets. The slower relaxations are explained in terms of a coupled triplet of vibrational modes, which preserves coherence by forming a tightly bound group to satisfy the condition of circa conservation of vibrational energy. Using data from the negative‐time range (i.e., when the probe pulse precedes the pump pulse), the electronic phase relaxation time is found to be 31±1 fs. The dynamic vibrational mode in the excited state (1171 cm?1), detected in the positive‐time range, is also studied from the negative‐time traces under the same experimental conditions.  相似文献   

14.
Ultrafast photolysis of 9-diazofluorene (DAF) produces a broadly absorbing transient within the instrument time resolution (300 fs), which is assigned to an excited state of the diazo compound. The diazo excited state fragments to form fluorenylidene (Fl) in both its lowest energy singlet state (1Fl, 405-430 nm, depending on the solvent) and a higher energy singlet state (370 nm, 1Fl*). The excited singlet carbene has a lifetime of 20.9 ps in acetonitrile and decays to the lower energy singlet state (1Fl), which relaxes to the triplet ground state (3Fl) in acetonitrile, cyclohexane, benzene, and hexafluorobenzene. The equilibrium mixture of singlet and triplet fluorenylidene reacts with these solvents. Singlet fluorenylidene reacts with methanol and cyclohexene in competition with relaxation to 3Fl. One of the reaction products in methanol is the 9-fluorenyl cation. The rate of intersystem crossing (ISC) in hexafluorobenzene and other halogenated solvents is remarkably slow given that carbene ISC rates are generally fastest in nonpolar solvents. An explanation of this effect is advanced.  相似文献   

15.
We report on vibrational coherence dynamics in excited and ground electronic states of all-trans retinal protonated Schiff-bases (RPSB), investigated by time-resolved Degenerate Four-Wave-Mixing (DFWM). The results show that wave packet dynamics in the excited state of RPSB consist of only low-frequency (<800 cm(-1)) modes. Such low-frequency wave packet motion is observed over a broad range of detection wavelengths ranging from excited state absorption (~500 nm) to stimulated emission (>600 nm). Our results indicate that low-frequency coherences in the excited state are not activated directly by laser excitation but rather by internal vibrational energy redistribution. This is supported by the observation that similar coherence dynamics are not observed in the electronic ground state. Challenging previous experimental results, we show that the formation of low-frequency coherence dynamics in RPSB does not require significant excess vibrational energy deposition in the excited state vibrational manifolds. Concerning ground state wave packet dynamics, we observe a set of high-frequency (>800 cm(-1)) modes, reflecting mainly single and double bond stretching motion in the retinal polyene-chain. Dephasing of these high-frequency coherences is mode-dependent and partially differs from analogous vibrational dephasing of the all-trans retinal chromophore in a protein environment (bacteriorhodopsin).  相似文献   

16.
The half-lantern compound [{Pt(bzq)(μ-C(7)H(4)NS(2)-κN,S)}(2)]·Me(2)CO (1) was obtained by reaction of equimolar amounts of potassium 2-mercaptobenzothiazolate (KC(7)H(4)NS(2)) and [Pt(bzq)(NCMe)(2)]ClO(4). The Pt(II)···Pt(II) separation in the neutral complex [{Pt(bzq)(μ-C(7)H(4)NS(2)-κN,S)}(2)] is 2.910 (2) ?, this being among the shortest observed in half-lantern divalent platinum complexes. Within the complex, the benzo[h]quinoline (bzq) groups lie in close proximity with most C···C distances being between 3.3 and 3.7 ?, which is indicative of significant π-π interactions. The reaction of 1 with halogens X(2) (X(2) = Cl(2), Br(2), or I(2)) proceeds with a two-electron oxidation to give the corresponding dihalodiplatinum(III) complexes [{Pt(bzq)(μ-C(7)H(4)NS(2)-κN,S)X}(2)] (X = Cl 2, Br 3, I 4). Their X-ray structures confirm the retention of the half-lantern structure and the coordination mode of the bzq and the bridging ligand μ-C(7)H(4)NS(2)-κN,S. The Pt-Pt distances (Pt-Pt = 2.6420(3) ? 2, 2.6435(4) ? 3, 2.6690(3) ? 4) are shorter than that in 1 because of the Pt-Pt bond formation. Time dependent-density functional theory (TD-DFT) studies performed on 1 show a formal bond order of 0 between the metal atoms, with the 6p(z) contribution diminishing the antibonding character of the highest occupied molecular orbital (HOMO) and being responsible for an attractive intermetallic interaction. A shortening of the Pt-Pt distance from 2.959 ? in the ground state S(0) to 2.760 ? in the optimized first excited state (T(1)) is consistent with an increase in the Pt-Pt bond order to 0.5. In agreement with TD-DFT calculations, the intense, structureless, red emission of 1 in the solid state and in solution can be mainly attributed to triplet metal-metal-to-ligand charge transfer ((3)MMLCT) [dσ*(Pt-Pt) → π*(bzq)] excited states. The high quantum yields of this emission measured in toluene (44%) and solid state (62%) at room temperature indicate that 1 is a very efficient and stable (3)MMLCT emitter, even in solution. The high luminescence quantum yield of its red emission, added to its neutral character and the thermal stability of 1, make it a potential compound to be incorporated as phosphorescent dopant in multilayer organic light-emitting devices (OLEDs).  相似文献   

17.
Using one color ultrafast pump-probe spectroscopy, the authors create N-level multiphoton rotational wave packets via resonant optical pumping between the A((1)Sigma(u) (+)) and E((1)Sigma(g) (+)) electronically bound states of Li(2) from a single optically state-selected rovibrational state |nu(A)=11, j(A)=28>. The authors find that excitation with a single amplitude shaped femtosecond pulse allows the direct observation of up to a six photon absorption, which generates a coherent superposition of 13 rotational states. The multilevel rotational wave packet is theoretically treated with the multipole moment formalism in order to characterize the experimentally observed time-dependent alignment. In particular, the authors find that the magnetic state distributions measured among coherently excited rotational states generated by the resonant multiphoton pumping reduces the measured coherence amplitudes by as much as 40%.  相似文献   

18.
In the active layer of organic solar cells (OSCs), the lifetime of triplet excitons is one of the decisive factors in the diffusion length and therefore has important impact on the power conversion efficiency of the devices. Herein, we have investigated singlet excited state relaxation dynamics and their triplet exciton lifetimes of two thiophene-coupled perylene diimides (PDI) dyads (2PDI-Th and fused-2PDI-Th), in order to provide a unique explanation in depth on their different performances in OSC devices. From the transient absorption (TA) spectra, the singlet excitons of 2PDI-Th form excimers in the time scale of 1.5 ps. Then the excimers go into the triplet state via intersystem crossing (ISC). In fused-2PDI-Th, triplet excitons are generated directly from the singlet excited excitons via the efficient ISC. Density functional theory (DFT) calculations further support the formation of excimers. DFT results indicate that 2PDI-Th exhibits an H-typed molecular configuration which is beneficial to form the excimers, while fused-2PDI-Th gives a twisted X-shaped configuration in the optimized ground and excited state. In steady-state emission spectra, 2PDI-Th shows abroad and featureless spectral characteristics of the excimers with a decay time of 840 ps, which is much shorter than those of PDI (5.5 ns) and fused-2PDI-Th (3.3 ns). The triplet lifetime (67 μs) of fused-2PDI-Th is factor of 3 longer than that of 2PDI-Th (22 μs). These results demonstrate that ring-fused structure is an efficient strategy to eliminate excimer formation and prolong the lifetime of triplet excitons, which provides a new insight for design of optoelectronic molecules for high efficiency organic solar cells.  相似文献   

19.
《中国化学快报》2020,31(11):2965-2969
In the active layer of organic solar cells (OSCs), the lifetime of triplet excitons is one of the decisive factors in the diffusion length and therefore has important impact on the power conversion efficiency of the devices. Herein, we have investigated singlet excited state relaxation dynamics and their triplet exciton lifetimes of two thiophene-coupled perylene diimides (PDI) dyads (2PDI-Th and fused-2PDI-Th), in order to provide a unique explanation in depth on their different performances in OSC devices. From the transient absorption (TA) spectra, the singlet excitons of 2PDI-Th form excimers in the time scale of 1.5 ps. Then the excimers go into the triplet state via intersystem crossing (ISC). In fused-2PDI-Th, triplet excitons are generated directly from the singlet excited excitons via the efficient ISC. Density functional theory (DFT) calculations further support the formation of excimers. DFT results indicate that 2PDI-Th exhibits an H-typed molecular configuration which is beneficial to form the excimers, while fused-2PDI-Th gives a twisted X-shaped configuration in the optimized ground and excited state. In steady-state emission spectra, 2PDI-Th shows abroad and featureless spectral characteristics of the excimers with a decay time of 840 ps, which is much shorter than those of PDI (5.5 ns) and fused-2PDI-Th (3.3 ns). The triplet lifetime (67 μs) of fused-2PDI-Th is factor of 3 longer than that of 2PDI-Th (22 μs). These results demonstrate that ring-fused structure is an efficient strategy to eliminate excimer formation and prolong the lifetime of triplet excitons, which provides a new insight for design of optoelectronic molecules for high efficiency organic solar cells.  相似文献   

20.
Anthraquinone-bridged mononuclear and dinuclear complexes, [PtCl(AQ-amide-tpy)](PF6) (1), [Pt2Cl2(AQ-amide-tpy2)](PF6)2 (2), and [Pt2Cl2(AQ-eth-tpy2)](PF6)2 (3), were synthesized and their photochemical properties were investigated. Amide-bound mononuclear complex 1 exhibited only metal-to-ligand charge transfer (MLCT) absorption and emission, whereas dinuclear complex 2 exhibited a low-energy emission around 700 nm at room temperature. Emission lifetime analysis indicated that this emission was originated from the metal-metal-to-ligand charge transfer (MMLCT) excited state, implying the existence of an intramolecular Pt-Pt interaction at the photoexcited state. 3 with rigid ethynylene linkers showed a low-energy absorption around 520 nm (epsilon = approximately 1100 M(-1) cm(-1)) in addition to an 1MLCT absorption, which was ascribed to a 3MLCT absorption from the consideration of the Pt-Pt distance on a geometry-optimized structure. The emission of 3 appeared at 600 nm, which is higher in energy compared with the emission of 2. It is postulated that the restriction of the Pt-Pt distance flexibility in the rigid structure of 3 prevents the significant increase of the Pt-Pt interaction at the excited state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号