首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1s2p resonant inelastic X-ray scattering (RIXS) spectroscopy has been measured for a series of iron oxides, including octahedral and tetrahedral Fe(II) and Fe(III) systems. Their spectral shapes have been analyzed and explained using crystal-field multiplet simulations. The RIXS planes and the K-edge and L-edge X-ray absorption spectra related to these RIXS planes will be discussed with respect to their analytical opportunities. It is concluded that the full power and possibilities of 1s2p RIXS needs an overall resolution of 0.3 eV. This will yield a technique with more detailed information than K-edge and L-edge X-ray absorption combined, obtained in a single experiment. Another major advantage is that 1s2p RIXS involves only hard X-rays, and experiments under essentially any condition and on any system are feasible.  相似文献   

2.
Chlorine K-edge X-ray absorption spectroscopy (XAS) and ground-state and time-dependent hybrid density functional theory (DFT) were used to probe the electronic structures of O(h)-MCl(6)(2-) (M = Ti, Zr, Hf, U) and C(4v)-UOCl(5)(-), and to determine the relative contributions of valence 3d, 4d, 5d, 6d, and 5f orbitals in M-Cl bonding. Spectral interpretations were guided by time-dependent DFT calculated transition energies and oscillator strengths, which agree well with the experimental XAS spectra. The data provide new spectroscopic evidence for the involvement of both 5f and 6d orbitals in actinide-ligand bonding in UCl(6)(2-). For the MCl(6)(2-), where transitions into d orbitals of t(2g) symmetry are spectroscopically resolved for all four complexes, the experimentally determined Cl 3p character per M-Cl bond increases from 8.3(4)% (TiCl(6)(2-)) to 10.3(5)% (ZrCl(6)(2-)), 12(1)% (HfCl(6)(2-)), and 18(1)% (UCl(6)(2-)). Chlorine K-edge XAS spectra of UOCl(5)(-) provide additional insights into the transition assignments by lowering the symmetry to C(4v), where five pre-edge transitions into both 5f and 6d orbitals are observed. For UCl(6)(2-), the XAS data suggest that orbital mixing associated with the U 5f orbitals is considerably lower than that of the U 6d orbitals. For both UCl(6)(2-) and UOCl(5)(-), the ground-state DFT calculations predict a larger 5f contribution to bonding than is determined experimentally. These findings are discussed in the context of conventional theories of covalent bonding for d- and f-block metal complexes.  相似文献   

3.
Lu TT  Lai SH  Li YW  Hsu IJ  Jang LY  Lee JF  Chen IC  Liaw WF 《Inorganic chemistry》2011,50(12):5396-5406
In addition to probing the formation of dinitrosyl iron complexes (DNICs) by the characteristic Fe K-edge pre-edge absorption energy ranging from 7113.4 to 7113.8 eV, the distinct S K-edge pre-edge absorption energy and pattern can serve as an efficient tool to unambiguously characterize and discriminate mononuclear DNICs and dinuclear DNICs containing bridged-thiolate and bridged-sulfide ligands. The higher Fe-S bond covalency modulated by the stronger electron-donating thiolates promotes the Fe → NO π-electron back-donation to strengthen the Fe-NO bond and weaken the NO-release ability of the mononuclear DNICs, which is supported by the Raman ν(Fe-NO) stretching frequency. The Fe-S bond covalency of DNICs further rationalizes the binding preference of the {Fe(NO)(2)} motif toward thiolates following the trend of [SEt](-) > [SPh](-) > [SC(7)H(4)SN](-). The relative d-manifold energy derived from S K-edge XAS as well as the Fe K-edge pre-edge energy reveals that the electronic structure of the {Fe(NO)(2)}(9) core of the mononuclear DNICs [(NO)(2)Fe(SR)(2)](-) is best described as {Fe(III)(NO(-))(2)}(9) compared to [{Fe(III)(NO(-))(2)}(9)-{Fe(III)(NO(-))(2)}(9)] for the dinuclear DNICs [Fe(2)(μ-SEt)(μ-S)(NO)(4)](-) and [Fe(2)(μ-S)(2)(NO)(4)](2-).  相似文献   

4.
Variations in the electronic structure and structural distortion in multiferroic DyMnO(3) were probed by synchrotron x-ray diffraction, lifetime-broadening-suppressed x-ray absorption spectroscopy (XAS), and ab initio electronic structure calculations. The refined x-ray diffraction data enabled an observation of a diminished local Jahn-Teller distortion of Mn sites within MnO(6) octahedra in DyMnO(3) on applying the hydrostatic pressure. The intensity of the white line in Mn K-edge x-ray absorption spectra of DyMnO(3) progressively increased with the increasing pressure. With the increasing hydrostatic pressure, the absorption threshold of an Mn K-edge spectra of DyMnO(3) shifted toward a greater energy, whereas the pre-edge line slightly shifted to a smaller energy. We provide the spectral evidence for the pressure-induced bandwidth broadening for manganites. The intensity enhancement of the white line in Mn K-edge spectra is attributed to a diminished Jahn-Teller distortion of MnO(6) octahedra in compressed DyMnO(3). A comparison of the pressure-dependent XAS spectra with the ab initio electronic structure calculations and full calculations of multiple scattering using the code FDMNES shows the satisfactory agreement between experimental and calculated Mn K-edge spectra.  相似文献   

5.
Time-dependent density functional theory (TDDFT) has been applied to study core excitations from 1s and 2p Mn orbitals in a series of manganese complexes with oxygen and nitrogen donor ligands. The effect of basis set and functional on the excitation energy was evaluated in detail for one complex, Mn(acac)2 x (H2O)2. The results obtained for a range of compounds, namely, [Mn(Im)6]Cl2, Mn(CH3COO)2 x 4 H2O, Mn(acac)3, Mn(SALADHP)2 and [Mn(SALPN)O]2, show good consistency with the data from X-ray absorption spectroscopy (XAS), confirming the relation between the Mn K-edge energy and the oxidation state of the Mn atom. The energies predicted for 2p core excitations show a dependence on the metal oxidation state very similar to that determined experimentally by 1s2p resonant inelastic X-ray scattering (RIXS) studies for Mn(acac)2 x (H2O)2, Mn(acac)3, and Mn(sal)2(bipy). The reliability of the K-edge energies obtained in the present study indicates that TDDFT can be used in determining the oxidation states of Mn atoms in different computational models of the manganese cluster of photosystem II (PSII).  相似文献   

6.
Recent time-resolved X-ray absorption experiments probing the low-spin to high-spin photoconversion in Fe(II) complexes have monitored the complex interplay between electronic and structural degrees of freedom on an ultrafast time scale. In this study, we use transition potential (TP) and time-dependent (TD) DFT to simulate the picosecond time-resolved iron K-edge X-ray absorption spectrum of the spin crossover (SCO) complex, [Fe(tren(py)(3))](2+). This is achieved by simulating the X-ray absorption spectrum of [Fe(tren(py)(3))](2+) in its low-spin (LS), (1)A(1), ground state and its high-spin (HS), (5)T(2), excited state. These results are compared with the X-ray absorption spectrum of the high-spin analogue (HSA), [Fe(tren(6-Me-py)(3))](2+), which has a (5)T(2) ground state. We show that the TP-DFT methodology can simulate a 40 eV range of the iron K-edge XANES spectrum reproducing all of the major features observed in the static and transient spectra of the LS, HS, and HSA complexes. The pre-edge region of the K-edge spectrum, simulated by TD-DFT, is shown to be highly sensitive to metal-ligand bonding. Changes in the intensity of the pre-edge region are shown to be sensitive to both symmetry and π-backbonding by analysis of relative electric dipole and quadrupole contributions to the transition moments. We generate a spectroscopic map of the iron 3d orbitals from our TD-DFT results and determine ligand field splitting energies of 1.55 and 1.35 eV for the HS and HSA complexes, respectively. We investigate the use of different functionals finding that hybrid functionals (such as PBE0) produce the best results. Finally, we provide a detailed comparison of our results with theoretical methods that have been previously used to interpret Fe K-edge spectroscopy of equilibrium and time-resolved SCO complexes.  相似文献   

7.
A series of metal-varied [ML(SC6F5)] model complexes (where L = hydrotris(3,5-diisopropyl-1-pyrazolyl)borate and M = Mn, Fe, Co, Ni, Cu, and Zn) related to blue copper proteins has been studied by a combination of absorption, MCD, resonance Raman, and S K-edge X-ray absorption spectroscopies. Density functional calculations have been used to characterize these complexes and calculate their spectra. The observed variations in geometry, spectra, and bond energies are interpreted in terms of changes in the nature of metal-ligand bonding interactions. The metal 3d-ligand orbital interaction, which contributes to covalent bonding in these complexes, becomes stronger going from Mn(II) to Co(II) (the sigma contribution) and to Cu(II) (the pi contribution). This change in the covalency results from the increased effective nuclear charge of the metal atom in going from Mn(II) to Zn(II) and the change in the 3d orbital populations (d5-->d10). Ionic bonding also plays an important role in determining the overall strength of the ML(+)-SC6F5(-) interaction. However, there is a compensating effect: as the covalent contribution to the metal-ligand bonding increases, the ionic contribution decreases. These results provide insight into the Irving-Williams series, where it is found that the bonding of the ligand being replaced by the thiolate makes a major contribution to the observed order of the stability constants over the series of metal ions.  相似文献   

8.
High-valent Mn-oxo species have been suggested to have a catalytically important role in the water splitting reaction which occurs in the Photosystem II membrane protein. In this study, five- and six-coordinate mononuclear Mn(V) compounds were investigated by polarized X-ray absorption spectroscopy in order to understand the electronic structure and spectroscopic characteristics of high-valent Mn species. Single crystals of the Mn(V)-nitrido and Mn(V)-oxo compounds were aligned along selected molecular vectors with respect to the X-ray polarization vector using X-ray diffraction. The local electronic structure of the metal site was then studied by measuring the polarization dependence of X-ray absorption near-edge spectroscopy (XANES) pre-edge spectra (1s to 3d transition) and comparing with the results of density functional theory (DFT) calculations. The Mn(V)-nitrido compound, in which the manganese is coordinated in a tetragonally distorted octahedral environment, showed a single dominant pre-edge peak along the MnN axis that can be assigned to a strong 3d(z(2))-4p(z) mixing mechanism. In the square pyramidal Mn(V)-oxo system, on the other hand, an additional peak was observed at 1 eV below the main pre-edge peak. This component was interpreted as a 1s to 3d(xz,yz) transition with 4px,y mixing, due to the displacement of the Mn atom out of the equatorial plane. The XANES results have been correlated to DFT calculations, and the spectra have been simulated using a TD (time-dependent)-DFT approach. The relevance of these results to understanding the mechanism of the photosynthetic water oxidation is discussed.  相似文献   

9.
The Fe K-edge X-ray absorption near-edge (XANES) spectra from Fe(1-x)Ga(x)SbO(4), having a rutile-like structure, have been investigated. Similar to the Ti K-edge XANES spectrum from TiO(2) (rutile), the low-energy pre-edge region observed in the Fe K-edge spectra is too broad to be representative of only a local, quadrupolar 1s → 3d excitation. The broadness of this peak results from the presence of a nonlocal transition, referred to as an intersite hybrid, which involves the excitation of 1s electrons to unoccupied 3d states of a next-nearest-neighbor Fe atom. (These 3d states overlap Fe 4p states of the absorbing atom through O 2p states.) With increasing Ga concentration, the intensity of the intersite hybrid peak decreases because of a deficiency of unoccupied next-nearest-neighbor 3d states. This observation provides important information on how the peak intensities of these nonlocal excitations are affected by substitution of the constituent elements.  相似文献   

10.
A set of resonant inelastic X-ray scattering (RIXS) studies focusing on the 2p64f(n)-->2p54f(n)5d1(2p54f(n+1)5d0)-->2p63d94f(n)5d1(2p63d94f(n+1)5d0) channel of dysprosium in Dy metal, Dy2O3, DyNi3 and Dy25Fe18 compounds have been carried out. Data showed with high statistics and resolution, the different delocalization degree of the 5d band of dysprosium in these compounds, e.g., decreasing from Dy metal to DyNi3, Dy25Fe18 and to dysprosium oxide, in agreement with the high-resolution XANES (HRXANES) spectra. Band structure calculations performed on Dy metal and Dy2O3 confirm both RIXS and HRXANES results in the increasing delocalization of the dysprosium 5d band in Dy metal with respect to Dy2O3. The 5d orbital occupancies of DyNi3 and Dy25Fe18 alloys have been also studied by comparison of the HRXANES white line (WL) area with the behavior of the final states energy position in RIXS spectra and we show that DyNi3 has a higher 5d orbital occupancy than Dy25Fe18.  相似文献   

11.
The electronic properties of a series of colossal magnetoresistance (CMR) compounds, namely LaMnO3, La(1-x)Ba(x)(MnO3 (0.2 < or = x < or = 0.55), La(0.76)Ba(0.24)Mn(0.84)Co(0.16)O3, and La(0.76)Ba(0.24)Mn(0.78)Ni(0.22)O3, have been investigated in a detailed spectroscopic study. A combination of X-ray photoelectron spectroscopy (XPS), X-ray emission spectroscopy (XES), X-ray absorption spectroscopy (XAS), and resonant inelastic X-ray scattering (RIXS) was used to reveal a detailed picture of the electronic structure in the presence of Ba, Co, and Ni doping in different concentrations. The results are compared with available theory. The valence band of La(1-x)()Ba(x)MnO3 (0 < or = x < or = 0.55) is dominated by La 5p, Mn 3d, and O 2p states, and strong hybridization between Mn 3d and O 2p states is present over the whole range of Ba concentrations. Co-doping at the Mn site leads to an increased occupancy of the e(g) states near the Fermi energy and an increase in the XPS valence band intensity between 0.5 and 5 eV, whereas the Ni-doped sample shows a lower density of occupied states near the Fermi energy. The Ni d states are located in a band spanning the energy range of 1.5-5 eV. XAS spectra indicate that the hole doping leads to mixed Mn 3d-O 2p states. Furthermore, RIXS at the Mn L edge has been used to probe d-d transitions and charge-transfer excitations in La(1-x)Ba(x)MnO3.  相似文献   

12.
Extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) spectroscopies were used to probe the first-shell coordination structure of Mn(II) in aqueous MnBr2 solutions at ambient conditions from very dilute to the near saturation limit. The Mn K-edge EXAFS spectra for 0.05 and 0.2 m solutions showed that there was no Br(−I) in the first shell, and that the Mn(II) was fully hydrated with six water molecules in an octahedral arrangement. In contrast, for 6 m solution, the coordination number of water was reduced to about 5, and an average of about one bromine atom was present in the first shell as a contact ion pair. The 1s → 4p transition at 6545.5 eV confirmed the observation of Mn–Br contact ion pairs at high concentrations and the 1s → 3d transition at 6539.5 eV showed that the first shell coordination symmetry remained octahedral even in the presence of Mn–Br ion pairs.  相似文献   

13.
The electron transfer series of complexes [V((t)bpy)(3)](z) (z = 3+, 2+, 0, 1-) has been synthesized and spectroscopically characterized with the exception of the monocationic species. Magnetic susceptibility measurements (4-290 K) establish an S = 1 ground state for [V((t)bpy)(3)](3+), S = (3)/(2) for [V((t)bpy)(3)](2+), S = (1)/(2) for [V((t)bpy)(3)], and an S = 0 ground state for [V((t)bpy)(3)](1-). The electrochemistry of this series recorded in tetrahydrofuran solution exhibits four reversible one-electron transfer steps. Electronic absorption, X-band electron paramagnetic resonance (EPR), and V K-edge X-ray absorption (XAS) spectra were recorded. All complexes have been studied computationally with density functional theory (DFT) using the B3LYP functional. It is unequivocally shown that the electronic structure of complexes is best described as [V(III)((t)bpy(0))(3)](3+), [V(II)((t)bpy(0))(3)](2+), [V(II)((t)bpy(?))(2)((t)bpy(0))](0), and [V(II)((t)bpy(?))(3)](1-), where ((t)bpy(0)) represents the neutral form of the ligand and ((t)bpy(?))(1-) is the one-electron reduced mononanionic radical form. In the neutral and monoanionic members, containing two and three ((t)bpy(?))(1-) ligands, respectively, the ligand spins are strongly antiferromagnetically coupled to the spins of the central V(II) ion (d(3); S = (3)/(2)) affording the observed ground states given above.  相似文献   

14.
Photosystem II (PS II), found in oxygenic photosynthetic organisms, catalyses the most energetically demanding reaction in nature, the oxidation of water to molecular oxygen and protons. The water oxidase in PS II contains a Mn(4)Ca cluster (oxygen evolving complex, OEC), whose catalytic mechanism has been extensively investigated but is still unresolved. In particular the precise Mn oxidation levels through which the cluster cycles during functional turnover are still contentious. In this, the first of several planned parts, we examine a broad range of published data relating to this question, while considering the recent atomic resolution PS II crystal structure of Umena et al. (Nature, 2011, 473, 55). Results from X-ray, UV-Vis and NIR spectroscopies are considered, using an approach that is mainly empirical, by comparison with published data from known model systems, but with some reliance on computational or other theoretical considerations. The intention is to survey the extent to which these data yield a consistent picture of the Mn oxidation states in functional PS II - in particular, to test their consistency with two current proposals for the mean redox levels of the OEC during turnover; the so called 'high' and 'low' oxidation state paradigms. These systematically differ by two oxidation equivalents throughout the redox accumulating catalytic S state cycle (states S(0)S(3)). In summary, we find that the data, in total, substantially favor the low oxidation proposal, particularly as a result of the new analyses we present. The low oxidation state scheme is able to resolve a number of previously 'anomalous' results in the observed UV-Visible S state turnover spectral differences and in the resonant inelastic X-ray spectroscopy (RIXS) of the Mn pre-edge region of the S(1) and S(2) states. Further, the low oxidation paradigm is able to provide a 'natural' explanation for the known sensitivity of the OEC Mn cluster to cryogenic near infra-red (NIR) induced turnover to alternative spin/redox states in S(2) and S(3).  相似文献   

15.
We report a resonant inelastic x-ray scattering (RIXS) study of crystalline CeB(6). Ce L(α1,2) RIXS was measured with excitation energies resonant with the Ce L(3)-edge. A lifetime-broadening suppressed x-ray absorption near-edge structure (LBS-XANES), which successfully reproduced the L(α1,2) RIXS spectra over wide ranges of excitation and emission energies, was simulated using the SIM-RIXS program. A pre-edge structure in the LBS-XANES can be resolved, and many-body effects were suggested in the L(α1,2) RIXS around the Ce L(3)-edge energy. No convincing signs of Ce (II) or Ce (IV) states were observed in the LBS-XANES. Ce L(γ4) RIXS was measured at 302 K and 28 K with excitation energies across the Ce L(1)-edge. The interactions of p-valence electrons between Ce and B(6) were found to be considerably small, regardless of temperature. Thus, the electronic state of CeB(6) was concluded to be suitably described as a nominally Ce(4f(1))(3+)(e(-))(B(6))(2-) system with some hybridization among all valence orbitals of Ce and B.  相似文献   

16.
Critical issues concerning emerging Fe-based superconductors include the degree of electron correlation and the origin of the superconductivity. X-Ray absorption spectra (XAS) and resonant inelastic X-ray scattering spectra (RIXS) of FeSe(1-x)Te(x) (x = 0-1) single crystals were obtained to study their electronic properties that relate to electron correlation and superconductivity. The linewidth of Fe L(2,3)-edges XAS of FeSe(1-x)Te(x) is narrower than that of Fe-pnictides, revealing the difference between their hybridization effects and localization character and those of other Fe-pnictides. While no significant differences exist between the Fe L-edge XAS and RIXS of FeSe(1-x)Te(x) and those of Fe-pnictides, Se K-edge and Te K-edge XAS exhibit substantial edge shift, suggesting that the superconductivity in an Fe-Se superconductor is strongly associated with the ligand states. A comparison of the Se K-edge and Te K-edge spectra reveals that the charge transfer may occur between Se and Te. Given the Coulomb interaction and the bandwidth, the spectral results indicate that FeSe(1-x)Te(x) is unlikely to be a weakly correlated system unlike the Fe-pnictides of the "1111" and "122" families. The spectral results further demonstrate that superconductivity in this class of Fe-based compounds is strongly associated with the ligand 4p hole state.  相似文献   

17.
18.
The geometric and electronic structure of the untethered heme-peroxo-copper model complex [(F(8)TPP)Fe(III)-(O(2)(2)(-))-Cu(II)(TMPA)](ClO(4)) (1) has been investigated using Cu and Fe K-edge EXAFS spectroscopy and density functional theory calculations in order to describe its geometric and electronic structure. The Fe and Cu K-edge EXAFS data were fit with a Cu...Fe distance of approximately 3.72 A. Spin-unrestricted DFT calculations for the S(T) = 2 spin state were performed on [(P)Fe(III)-(O(2)(2)(-))-Cu(II)(TMPA)](+) as a model of 1. The peroxo unit is bound end-on to the copper, and side-on to the high-spin iron, for an overall mu-eta(1):eta(2) coordination mode. The calculated Cu...Fe distance is approximately 0.3 A longer than that observed experimentally. Reoptimization of [(P)Fe(III)-(O(2)(2)(-))-Cu(II)(TMPA)](+) with a 3.7 A Cu...Fe constrained distance results in a similar energy and structure that retains the overall mu-eta(1):eta(2)-peroxo coordination mode. The primary bonding interaction between the copper and the peroxide involves electron donation into the half-occupied Cu d(z)2 orbital from the peroxide pi(sigma) orbital. In the case of the Fe(III)-peroxide eta(2) bond, the two major components arise from the donor interactions of the peroxide pi*(sigma) and pi*(v) orbitals with the Fe d(xz) and d(xy) orbitals, which give rise to sigma and delta bonds, respectively. The pi*(sigma) interaction with both the half-occupied d(z)2 orbital on the copper (eta(1)) and the d(xz) orbital on the iron (eta(2)), provides an effective superexchange pathway for strong antiferromagnetic coupling between the metal centers.  相似文献   

19.
X-ray structural and spectroscopic properties of a series of heterodinuclear d(8)-d(10) metal complexes [M'M' '(mu-dcpm)(2)(CN)(2)](+) containing d(8) Pt(II), Pd(II), or Ni(II) and d(10) Au(I), Ag(I), or Cu(I) ions with a dcpm bridging ligand have been studied (dcpm = bis(dicyclohexylphosphino)methane; M' = Pt, M' ' = Au 4, Ag 5, Cu, 6; M' ' = Au, M' = Pd 7, Ni 8). X-ray crystal analyses showed that the metal...metal distances in these heteronuclear metal complexes are shorter than the sum of van der Waals radii of the M' and M' ' atoms. The UV-vis absorption spectra of 4-6 display red-shifted intense absorption bands from the absorption spectra of the mononuclear trans-[Pt(phosphine)(2)(CN)(2)] and [M' '(phosphine)(2)](+) counterparts, attributable to metal-metal interactions. The resonance Raman spectra confirmed assignments of (1)[nd(sigma)-->(n + 1)p(sigma)] electronic transitions to the absorption bands at 317 and 331 nm in 4 and 6, respectively. The results of theoretical calculations at the MP2 level reveal an attractive interaction energy curve for the skewed [trans-Pt(PH(3))(2)(CN)(2)-Au(PH(3))(2)(+)] dimer. The interaction energy of Pt(II)-Au(I) was calculated to be ca. 0.45 ev.  相似文献   

20.
Two structurally homologous Mn compounds in different oxidation states were studied to investigate the relative influence of oxidation state and ligand environment on Mn K-edge X-ray absorption near-edge structure (XANES) and Mn Kbeta X-ray emission spectroscopy (Kbeta XES). The two manganese compounds are the di-mu-oxo compound [L'2Mn(III)O2Mn(IV)L'2](ClO4)3, where L' is 1,10-phenanthroline (Cooper, S. R.; Calvin, M. J. Am. Chem. Soc. 1977, 99, 6623-6630) and the linear mono-mu-oxo compound [LMn(III)OMn(III)L](ClO4)2, where L- is the monoanionic N,N-bis(2-pyridylmethyl)-N'-salicylidene-1,2-diaminoethane ligand (Horner, O.; Anxolabéhère-Mallart, E.; Charlot, M. F.; Tchertanov, L.; Guilhem, J.; Mattioli, T. A.; Boussac, A.; Girerd, J.-J. Inorg. Chem. 1999, 38, 1222-1232). Preparative bulk electrolysis in acetonitrile was used to obtain higher oxidation states of the compounds: the Mn(IV)Mn(IV) species for the di-mu-oxo compound and the Mn(III)Mn(IV) and Mn(IV)Mn(IV) species for the mono-mu-oxo compound. IR, UV/vis, EPR, and EXAFS spectra were used to determine the purity and integrity of the various sample solutions. The Mn K-edge XANES spectra shift to higher energy upon oxidation when the ligand environment remains similar. However, shifts in energy are also observed when only the ligand environment is altered. This is achieved by comparing the di-mu-oxo and linear mono-mu-oxo Mn-Mn moieties in equivalent oxidation states, which represent major structural changes. The magnitude of an energy shift due to major changes in ligand environment can be as large as that of an oxidation-state change. Therefore, care must be exercised when correlating the Mn K-edge energies to manganese oxidation states without taking into account the nature of the ligand environment and the overall structure of the compound. In contrast to Mn K-edge XANES, Kbeta XES spectra show less dependence on ligand environment. The Kbeta1,3 peak energies are comparable for the di-mu-oxo and mono-mu-oxo compounds in equivalent oxidation states. The energy shifts observed due to oxidation are also similar for the two different compounds. The study of the different behavior of the XANES pre-edge and main-edge features in conjunction with Kbeta XES provides significant information about the oxidation state and character of the ligand environment of manganese atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号