首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solid polymer electrolytes with relatively low ionic conductivity at room temperature and poor mechanical strength greatly restrict their practical applications. Herein, we design semi-interpenetrating network polymer (SNP) electrolyte composed of an ultraviolet-crosslinked polymer network (ethoxylated trimethylolpropane triacrylate), linear polymer chains (polyvinylidene fluoride-co-hexafluoropropylene) and lithium salt solution to satisfy the demand of high ionic conductivity, good mechanical flexibility, and electrochemical stability for lithium metal batteries. The semi-interpenetrating network has a pivotal effect in improving chain relaxation, facilitating the local segmental motion of polymer chains and reducing the polymer crystallinity. Thanks to these advantages, the SNP electrolyte shows a high ionic conductivity (1.12 mS cm−1 at 30 °C), wide electrochemical stability window (4.6 V vs. Li+/Li), good bendability and shape versatility. The promoted ion transport combined with suppressed impedance growth during cycling contribute to good cell performance. The assembled quasi-solid-state lithium metal batteries (LiFePO4/SNP/Li) exhibit good cycling stability and rate capability at room temperature.  相似文献   

2.
Interpenetrating polymer network (IPN) strategy was developed to fabricate novel hydrogels composed of cellulose and poly(N‐isopropylacrylamide) (PNIPAAm) with high mechanical strength and adjustable thermosensitivity. Cellulose hydrogels were prepared by chemically cross‐linking cellulose in NaOH/urea aqueous solution, which were employed as the first network. The second network was subsequently obtained by in situ polymerization/cross‐linking of N‐isopropylacrylamide in the cellulose hydrogels. The results from FTIR and solid 13C NMR indicated that the two networks co‐existed in the IPN hydrogels, which exhibited uniform porous structure, as a result of good compatibility. The mechanical and swelling properties of IPN hydrogels were strongly dependent on the weight ratio of two networks. Their temperature‐sensitive behaviors and deswelling kinetics were also discussed. This work created double network hydrogels, which combined the advantages of natural polymer and synthesized PNIPAAm collectively in one system, leading to the controllable temperature response and improvement in the physical properties. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
We report the synthesis and characterization of interpenetrating polymer networks (IPNs) exhibiting nonlinear optical (NLO) properties. The network consists of aliphatic polycarbonate urethane (PCU) and poly(methyl methacrylate-co-N,N-disubstituted urea), with a nonlinear optical (NLO) chromophore incorporated into N,N-disubstituted urea. The full IPNs have only one Tg, as determined by differential scanning calorimetry (DSC), together with scanning electron microscopy (SEM) observations, suggest a single phase morphology. The thin films of IPNs are transparent and the unpoled samples produced second harmonic generation (SHG) signals at room temperature. This result indicates that the NLO chromophore is oriented noncentrosymmetrically during the IPN formation process and is tightly held between the permanent entanglements of the two component networks of the IPN. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
The thermal decomposition kinetics of polyurethane/polyethyl acrylate interpenetrating polymer networks (PU/PEA IPN) were studied by means of thermogravimetry and derivative thermogravimetry (TG-DTG), and compared with those of polyurethane (PU) and polyethyl acrylate (PEA). The decomposition temperature (T i) of PU/PEA IPN was found to be higher thanT i of PEA, but lower thanT i of PU. Thermal decomposition kinetic parameters,n andE, estimated using Coats-Redfern method, are found for PU/PEA IPN, PU and PEA to be 1.6, 1.9 and 1.1, and 196.6, 258.6 and 139.2 kJ mol–1, respectively. The results show that PU/PEA IPN is neither a simple mixture of PU and PEA nor a copolymer of them. The mechanism of thermal decomposition of PU/PEA IPN is different from those of PU and PEA. The special network in PU/PEA IPN effectually protects weak bonds in the molecular chain of PU and PEA.We express our thanks to Dr. Yaxiong Xie and Zhiyuong Ren for their help in this work,  相似文献   

5.
Interpenetrating polymer networks (IPNs) based on polyurethane and polyacrylate-containing 4-(4'-nitrophenylazo) aniline chromophore groups were synthesized and characterized by infrared spectra, gel content and differential scanning calorimetry. Thin, transparent films of the IPNs were prepared by spin-coating, followed by thermal curing and corona poling. The poled IPN film shows very good optical properties and exhibits only one glass transition temperature. The second-order nonlinear optical (NLO) properties of the poled film were studied by visible light absorbance measurement according to one-dimensional rigid oriented gas model. The second-order nonlinear optical polarizability can reach 10-7 e.s.u. The poled IPN film of defined composition showed a good temporal stability of NLO properties at 120°C for more than 160 hr.  相似文献   

6.
Utilization of polyhydroxylated C60 in a condensation reaction with diisocyanated oligo(tetramethylene oxide) led to the successful fabrication of elastomeric poly(urethane-ether) networks. These polymer networks exhibit interesting thermal behavior at low temperatures, improved tensile strength and elongation at ambient temperatures, and enhanced thermal mechanical stability at high temperatures. Design of conducting elastomers was made by carrying out an in situ polymerization of conductive polymer precursors in an interpenetrating fashion at the near-surface of polyhydroxylated C60-hypercrosslinked elastomers. Results demonstrated that elastomers with an appreciable conductivity while retaining desirable elastic properties of the network can be achieved. The room-temperature conductivity of polyaniline interpenetrated (IPN) conducting elastomer was found to be 2.0 Scm−1. The tensile strength and elongation at break of one conductive IPN elastomer was found to be 20 MPa and 480%, respectively. Interestingly, the strain dependent conductivity of these conducting elastomers was found to increase progressively above 200% of elongation. These results demonstrated, for the first instance, conductivity measurements of organic conducting elastomers at an elongation length of higher than 300%, showing a r.t. conductivity of >4.0 Scm−1.  相似文献   

7.
Novel composite solid polymer electrolytes (CSPEs) and composite gel polymer electrolytes (CGPEs) have been prepared. CSPE consists of poly(ether-urethane) network polymer, which is superior to poly(ethylene oxide) in mechanical stability due to its cross-linked structure, modified montmorillonite (MMMT) and LiClO4, and CGPE with good mechanical strength comprises of the CSPE and LiClO4–PC (propylene carbonate) solution. The ionic conductivity can be enhanced after the addition of MMMT, and CGPE exhibits ionic conductivity in the order of 10−3 S/cm at room temperature. The temperature dependence of the ionic conductivity of the CSPE follows the Vogel–Tamman–Fulcher (VTF) equation. The effects of MMMT on the interactions in these systems and the possible conduction mechanisms are also discussed.  相似文献   

8.
Polycarbosilane networks were prepared from well-defined α, ω-difunctional oligomers: X-[Si(CH3)2-CH2-CH2]n-X with X = H ( 1 ) and X = CH=CH2 ( 2 ). Crosslinking reactions were performed by hydrosilylation of tetramethyltetravinylcyclotetrasiloxane (V4) or of tetravinylsilane with SiH end groups of 1 . Hydrosilylation of Si-CH=CH2 end groups of 2 with tetramethyltetrahydrocyclotetrasiloxane (D4H) was also successfully tried. Some physicochemical properties of these new networks will be presented.1) Interpenetrating networks based on polysiloxanes and polycarbonates were synthesized by the in situ method: a polysiloxane bearing various proportions of room temperature crosslinkable -Si(OEt)3 side groups was mixed with bis(allyl ethylene glycol) biscarbonate and a free-radical initiator. After the formation of the first network at room temperature, the cross-linking of the polycarbonate network was performed by raising the temperature up to 80°C. Various chemical modifications of the polysiloxane component in the IPN were performed in order to improve the degree of interpenetration as estimated from turbidity, density, refractive index and DSC measurements.2)  相似文献   

9.
A novel adsorbent Pb(II)-imprinted interpenetrating polymer network (IPN) of epoxy resin-triethylenetetramine and lead methacrylate-acrylamide-1,4-butanedioldiacrylate (BDDA) was synthesized by the metal ionic imprinted polymer (MIIP) technique. The IPN was prepared by in situ sequential polymerization, and the coordination interaction of Pb(II) and functional groups of the IPN adsorbent was discussed using FT-IR spectra. The characters of the IPN were investigated by a series of experiments. The experimental results show that trace Pb(II) ions can be quantitatively preconcentrated at pH 4.0 with recoveries >95%. The maximum static adsorption capacity of the ion-imprinted adsorbent was 138.6?mg?g?1. The imprinted IPN has a higher adsorption capacity and selectivity towards Pb(II). Moreover, the Pb(II)-imprinted IPN shows superior reusability and stability. The precision (R.S.D.) for 11 replicate adsorbent extractions of 20?ng?mL?1 Pb(II) was 2.9%. The accuracy of the proposed procedure was verified by analysing three standard reference materials. The prepared ion-imprinted IPN adsorbent was applied to three natural samples and also yielded satisfactory results. That is to say, the Pb(II)-imprinted IPN is suitable for environmental Pb(II) ionic selective removal as an SPE adsorbent.  相似文献   

10.
In this study, (sodium alginate (NaAlg)/acrylamide (AAm)) interpenetrating polymer networks (IPN) have been prepared at three different compositions, where the sodium alginate composition varies 1, 2, and 3% (w/v) in 50% (w/v) acrylamide solutions. These solutions have been irradiated with a 60Co‐γ source at different doses. The percent conversion was determined gravimetrically and 100% gelation was achieved at the 10.0 kGy dose. The swelling results at pH 7.0 and 9.0 indicated that (NaAlg/AAm)3IPN hydrogel, containing 3% NaAlg showed maximum % swelling in water, with swelling increasing in the order of Ni2+>Cd2+>Pb2+. Diffusion in aqueous solutions of metal ions within (NaAlg/AAm)IPN hydrogels was found to be Fickian character. Diffusion coefficients of (NaAlg/AAm)IPN hydrogels in water and aqueous solutions of metal ions were calculated. The maximum weight loss temperature and half life temperature for NaAlg, PAAm, (NaAlg/AAm)IPN and (NaAlg/AAm)IPN‐metal ion systems were found from thermal analysis studies. In the adsorption experiments, the efficiency of (NaAlg/AAm)IPN hydrogels to adsorb nickel, cadmium and lead ions from water was studied. (NaAlg/AAm)IPN hydrogels showed different adsorption for different aqueous solution of metal ion at pH 7.0. Adsorption isotherms were constructed for the (NaAlg/AAm)IPN‐metal ion systems. S type adsorption in the Giles classification system was found.  相似文献   

11.
A star network polymer with a pentaerythritol core linking four PEG-block polymeric arms was synthesized, and its corresponding gel polymer electrolyte based on lithium perchlorate and plasticizers EC/PC with the character being colorless and highly transparent has been also prepared. The polymer host was characterized and confirmed to be of a star network and an amorphous structure by FTIR, ^1H NMR and XRD studies. The polymer host hold good mechanical properties for pentaerythritol cross-linking. Maximum ionic conductivity of the prepared polymer electrolyte has reached 8.83 × 10 ^-4 S·cm^-1 at room temperature. Thermogravimetry (TG) of the polymer electrolyte showed that the thermal stability was up to at least 150 ℃. The gel polymer electrolyte was further evaluated in electrochromic devices fabricated by transparent PET-ITO and electrochromically active viologen derivative films, and its excellent performance promised the usage of the gel polymer electrolyte as ionic conductor material in electrochrornic devices.  相似文献   

12.
Five ionic imidazolium based monomers, namely 1‐vinyl‐3‐ethylimidazolium bis(trifluoromethylsulfonyl)imide (ILM1), 1‐vinyl‐3‐(diethoxyphosphinyl)‐propylimidazolium bis(trifluoromethylsulfonyl)imide (ILM2), 1‐[2‐(2‐methyl‐acryloyloxy)‐propyl]‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide (ILM3), 1‐[2‐(2‐methyl‐acryloyloxy)‐undecyl]‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide (ILM4), 1‐vinyl‐3‐ethylimidazolium dicyanamide (ILM5) were prepared and used for the synthesis of linear polymeric ionic liquids (PILs), crosslinked networks with polyethyleneglycol dimethacrylate (PEGDM) and interpenetrating polymer networks (IPNs) based on polybutadiene (PB). The ionic conductivities of IPNs prepared using an in situ strategy were found to depend on the ILM nature, Tg and the ratio of the other components. Novel ionic IPNs are characterized by increased flexibility, small swelling ability in ionic liquids (ILs) along with high conductivity and preservation of mechanical stability even in a swollen state. The maximum conductivity for a pure IPN was equal to 3.6 × 10?5 S/cm at 20 °C while for IPN swollen in [1‐Me‐3‐Etim] (CN)2N σ reached 8.5 × 10?3 S/cm at 20 °C or 1.4 × 10?2 S/cm at 50 °C. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4245–4266, 2009  相似文献   

13.
The phenomenon of forced compatibilization has been studied in poly(methyl acrylate)-polystyrene PMA-i-PS sequential interpenetrating polymer networks, IPNs, using differential scanning calorimetry. Both networks in the IPN were prepared using the same amount of ethylene glycol dimethacrylate, EGDMA, as crosslinking agent. The samples were subjected to thermal treatments which included annealing at different ageing temperatures T a, for 300 min. From the DSC curves, recorded on heating the enthalpy loss during the isothermal annealing, Δh a was calculated. The dependence of Dh a with the annealing temperature was used to define the temperature interval in which the conformational mobility is significant. The comparison of the Δh a(T a) curves obtained in an IPN and the results obtained with the pure component homo-networks with the same crosslinking density reveal some details of the miscibility of the IPN. In the case of the IPN crosslinked with 10% EGDMA, two peaks are apparent in the Δh a(T a) curve, but the high-temperature peak is shifted towards lower temperatures compared to that of the polystyrene network while the low-temperature one is nearly at the same temperature than the one of the poly(methyl acrylate) homonetwork. This means that compatibilization is not complete and phase separation still exists even at this high crosslinking density. The different behaviour of the high and low temperature transitions can be explained by the dynamic heterogeneity of the sample, i.e. by the different length of cooperativity of the conformational rearrangements of PMA and PS domains at any temperature. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Thermo-sensitive porous hydrogels composed of interpenetrated networks (IPN) of alginate-Ca2+ and PNIPAAm have been obtained. The hydrogels were prepared by cross-linking alginate-Na+ with Ca2+ ions inside PNIPAAm networks. Compressive tests and scanning electron microscopy were used to evaluate gel strength and pore morphology, respectively. IPN hydrogels displayed two distinct pore morphologies under thermal stimuli. Below 30-35 °C, the LCST of PNIPAAm in water, IPN hydrogels were highly porous. The pore size of hydrogel heated above LCST became progressively smaller. Alginate-Ca2+ and PNIPAAm hydrogels, used as references, did not present such behaviour, indicating that the porous effect is due to IPN hydrogel. It was verified that higher strength is achieved when the hydrogel presents small pore size and the temperature is increased. It is suggested that at temperatures above LCST, the PNIPAAm chains shrink and pull the alginate-Ca2+ networks back. During shrinking, the polymer chains occupy the open spaces (pores from which water is expelled), and therefore, the hydrogel becomes less deformable when subjected to compressive stress. The results presented in this work indicate that the mechanical properties as well as the pore morphologies of these IPN hydrogels can be tailored by thermal stimulus.  相似文献   

15.
Two kinds of interpenetrating polymer networks (IPNs) composed of two-component polyurethane (PU) and vinyl or methacrylic polymer (PV), namely, (polyether-castor oil)PU/PV IPN(I) and (polybutadiene-castor oil)PU/PV IPN(II), were synthesized at room temperature using benzoyl peroxide and N,N-dimethylaniline as redox initiator and dibutyltin dilaurate as catalyst. The former IPN was prepared by polymerization of castor oil, NCO-terminated polyether and vinyl or methacrylic monomer together and the latter IPN was obtained by polymerization of castor oil, NCO-terminated polybutadiene, NCO-terminated castor oil and vinyl or methacrylic monomer together. Various synthesis conditions affecting mechanical properties of the two kinds of IPNs were studied. Acrylonitrile (AN) is a good monomer for synthesizing IPN(I), but is a poor monomer for preparing IPN(II). At optimum conditions for the synthesis, both the (polyether-castor oil)PU/PAN IPNs and the (polybutadiene-castor oil)PU/polystyrene (PSt) IPNs possess permanent set about 10%, tensile strength over 13 and 11 MPa and ultimate elongation over 240% and 270%, respectively, thus behaving as elastomers. TEM micrograph of a (polybutadiene-castor oil)PU/PSt IPN showed a microphase separation in the IPN.  相似文献   

16.
In this paper, a commercial water absorbent polymer based on poly (sodium acrylate) (PAANa) was converted to an alcohol absorbent polymer. PAANa collapses in alcoholic swelling media such as ethanol and methanol. In the present paper, first, a full interpenetrating polymer network (IPN) gel was prepared through immersing PAANa hydrogel in a solution containing 2‐acrylamido2‐methyl propane sulfonic acid (AMPS), polyethylene glycol dimetahcrylate and ammonium persulfate. The second network was formed in hydrated PAANa through heating. It was synthesized in two conditions by chemical crosslinker and crosslinker‐free. The IPN was acid treated to investigate the effect of removing Na+ on alcohol absorbency. The synthesized IPN gels have the ability of absorbing up to 21 and 39 g/g ethanol and methanol, respectively. The samples which were synthesized using the chemical crosslinker in the second stage had more alcohol absorbency in comparison with the crosslinker‐free samples. Unexpectedly, acid treatment caused a decrease in alcohol absorbency. The IPN gels were characterized through thermogravimetric analyses (TGA) and dynamic mechanical thermal analysis (DMTA). The DMTA results confirmed the IPN structure of the gels, two distinctive peaks, which can be attributed to PAANa, and poly (AMPS) was observed in tan delta figures. TGA thermograms demonstrated that IPN had lower thermal stability in comparison with the initial PAANa, which can be attributed to higher vulnerability of SO3H group for degradation that reduced initial decomposition temperature. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
An Cu(II)-imprinted interpenetrating polymer network (IPN) gel of epoxy-diethylenetriamine and methacrylic acid-acrylamide-N,N′-methylene-bis-(acrylamide) was synthesized by the ionic imprint polymer (IIP) technique. The first polymer network is formed by epoxy gelation with diethylenetriamine. The other is formed by copper methacrylate co- polymerization with acrylamide and cross-linker N,N′-methylene-bis-(acrylamide). The adsorption–desorption characteristics of the IPN gel as a highly selective solid-phase extraction (SPE) and preconcentration adsorbent for Cu2+ from aqueous solution were investigated. The experimental results show that trace Cu2+ ions can be quantitatively enriched at pH 5 with recovery >95%. The maximum static adsorption capacity of the ion-imprinted functionalized gel adsorbent was 76 mg g−1. Comparing with non-imprinted IPN gel, the imprinted IPN gel has higher adsorption capacity and selectivity for Cu2+ by the static adsorption–desorption experiment. Simultaneously, the times of adsorption equilibration and complete desorption were remarkably short. The precision (RSD) for 11 replicate adsorbent extractions of 20 ng mL−1 Cu2+ was 3.4%. The established procedure was applied to two real water samples with satisfactory results. The prepared ion-imprinted IPN gel adsorbent was shown to be promising for solid-phase extraction coupled with atomic absorption spectrometry (AAS) for the determination of trace copper in real samples. In addition, the coordination interaction of Cu2+ and functional groups of the IPN gel adsorbent was primarily discussed by FT-IR spectra.  相似文献   

18.
 Four phenoxysilicon networks for nonlinear optical (NLO) applications were designed and prepared by an extended sol-gel process without additional H2O and catalyst. All poled polymer network films possess high second-order nonlinear optical coefficients (d33) of 10-?~10-8 esu. The investigation of NLO temporal stability at room temperature and elevated temperature (120℃) indicated that these films exhibit high d33 stability because the orientation of the chromophores are locked in the phenoxysilicon organic/inorganic networks.  相似文献   

19.
Our recent work on synthesis and application of thermally gelling nanoparticle dispersions is briefly reviewed here. These nanoparticles consist of interpenetrating polymer networks (IPN) of poly-acrylic acid (PAAc) and poly(N-isopropylacrylamide) (PNIPAM). The aqueous IPN nanoparticle dispersions with polymer concentrations above 2.5 wt % underwent an inverse thermoreversible gelation at about 33 °C. Dextran markers of various molecular weights as model macromolecular pseudodrugs were mixed with the IPN nanoparticle dispersion at room temperature. At body temperature, the dispersion became a gel. The dextran release profiles were then measured using UV-visible spectroscopy. The biocompatibility of this nanoparticle assembly was assessed using an animal implantation model.  相似文献   

20.
The integrals of the linear loss shear modulus vs. temperature (loss area, LA) and linear tan δ vs. temperature (tan δ area, TA) were characterized for various core/shell latex particles with synthetic rubber, poly(butadiene-stat-styrene) [P (Bd/S), 90/10], and interpenetrating polymer networks (IPN) as the cores. The IPN cores were composed of P(Bd/S) (Tg ≃ − 70°C) and an acrylate based copolymer (Tg around 10°C) for potential impact and damping improvement in thermoplastics. Poly(styrene-stat-acrylonitrile) (SAN, 72/28) was the shell polymer for all these polymers. Under the same loading, for both toughening and damping controls, among the IPN core/shell, blend of separate core/shell, and multilayered core/shell polymers, the IPN core/shell polymers were the best dampers. However, the other core/shell polymers also showed higher LA values than P(Bd/S)/SAN core/shell polymer. A comparison of LA values via a group contribution analysis method was made, the effect of particle morphology and phase continuity on damping being studied. Inverted core/shell latex particles (glassy polymer SAN was synthesized first) showed much higher LA and TA values than normal core/shell ones (rubbery polymer was synthesized first). Models for maximum LA and TA behavior are proposed. The damping property was essentially controlled by the phase miscibility and morphology of the core/shell latex particles. The LA values for each peak in these multiphase materials provided some indication of the several fractional phase volumes. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1501–1514, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号