首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electronic g tensors and hyperfine coupling tensors have been calculated for amavadin, an unusual eight-coordinate vanadium(IV) complex isolated from Amanita muscaria mushrooms. Different density-functional methods have been compared, ranging from local via gradient-corrected to hybrid functionals with a variable Hartree-Fock exchange admixture. For both electron paramagnetic resonance (EPR) properties, hybrid functionals with an appreciable exact-exchange admixture provide the closest agreement with experimental data. Second-order spin-orbit corrections provide non-negligible contributions to the 51V hyperfine tensor. The orientation of g and A tensors relative to each other also depends on spin-orbit corrections to the A tensor. A rationalization for the close resemblance of the EPR parameters of amavadin to those of the structurally rather different vanadyl complexes is provided, based on the nature of the relevant frontier orbitals.  相似文献   

2.
Metal and ligand hyperfine couplings of a previously suggested, energetically feasible Mn4Ca model cluster ( SG2009?1 ) for the S2 state of the oxygen‐evolving complex (OEC) of photosystem II (PSII) have been studied by broken‐symmetry density functional methods and compared with other suggested structural and spectroscopic models. This was carried out explicitly for different spin‐coupling patterns of the S=1/2 ground state of the MnIII(MnIV)3 cluster. By applying spin‐projection techniques and a scaling of the manganese hyperfine couplings, computation of the hyperfine and nuclear quadrupole coupling parameters allows a direct evaluation of the proposed models in comparison with data obtained from the simulation of EPR, ENDOR, and ESEEM spectra. The computation of 55Mn hyperfine couplings (HFCs) for SG2009?1 gives excellent agreement with experiment. However, at the current level of spin projection, the 55Mn HFCs do not appear sufficiently accurate to distinguish between different structural models. Yet, of all the models studied, SG2009?1 is the only one with the MnIII site at the MnC center, which is coordinated by histidine (D1‐His332). The computed histidine 14N HFC anisotropy for SG2009?1 gives much better agreement with ESEEM data than the other models, in which MnC is an MnIV site, thus supporting the validity of the model. The 13C HFCs of various carboxylates have been compared with 13C ENDOR data for PSII preparations with 13C‐labelled alanine.  相似文献   

3.
The careful validation of modern density functional methods for the computation of electron paramagnetic resonance (EPR) parameters in molybdenum complexes has been extended to a number of low-symmetry MoV systems that model molybdoenzyme active sites. Both g and hyperfine tensors tend to be reproduced best by hybrid density functionals with about 30-40% exact-exchange admixture, with no particular spin contamination problems encountered. Spin-orbit corrections to hyperfine tensors are mandatory for quantitative and, in some cases, even for qualitative agreement. The g11 (g||) component of the g tensor tends to come out too positive when spin-orbit coupling is included only to leading order in perturbation theory. Compared to single-crystal experiments, the calculations reproduce both g- and hyperfine-tensor orientations well, both relative to each other and to the molecular framework. This is significant, as simulations of the EPR spectra of natural-abundance frozen-solution samples frequently do not allow a reliable determination of the hyperfine tensors. These may now be extracted based on the quantum-chemically calculated parameters. In a number of cases, revised simulations of the experimental spectra have brought theory and experiment into substantially improved agreement. Systems with two terminal oxo ligands, and to some extent with an oxo and a sulfido ligand, have been confirmed to exhibit particularly large negative Deltag33 shifts and thus large g anisotropies. This is discussed in the context of the experimental data for xanthine oxidase.  相似文献   

4.
The capability of the density functional broken symmetry approach for the calculation of various EPR parameters of exchange coupled metal clusters is demonstrated by studying the experimentally well-investigated [Mn(III)Mn(IV)(mu-O)(2)(mu-OAc)DTNE](2+) complex. Geometry optimizations of the complex in its broken symmetry and high spin states yielded structures with two distinct manganese sites and geometrical parameters in good agreement with the X-ray structure. Exchange coupling constants were calculated from the energy differences between the high spin and broken symmetry states using the Heisenberg spin Hamiltonian. Very good agreement between theory and experiment was achieved with the B3LYP hybrid functional. The g-tensor calculations were performed employing the coupled perturbed Kohn-Sham equations. A strategy for the computation of g-tensor site values is presented and provides single-site g-tensors that are in good agreement with the expectations for Mn(III) and Mn(IV), respectively. Spin projection gave the g-tensor of the coupled manganese complex in very good agreement with the experimental results. Complete (55)Mn hyperfine tensors, including spin-orbit contributions, were calculated and spin-projected. The source of anisotropy in this system could be traced back to the Mn(III) ion in line with the experimental results. The isotropic manganese hyperfine coupling constants were underestimated by factors between 1.4 and 2.5. It is shown that this deficiency is systematic in character and not anchored in the broken symmetry approach. Nuclear quadrupole splitting of the (55)Mn nuclei is shown to be small in this system. In addition, (14)N and (1)H ligand hyperfine data were calculated and compared well with the experimental results. The quality of the extended point-dipole model was demonstrated in application to (1)H anisotropic hyperfine coupling constants.  相似文献   

5.
Exposure of (CO)5MnPbPh3 to 60Co γ-ray at 77 K gave one major paramagnetic species detectable by ESR spectroscopy. This exhibited an anisotropic hyperfine interaction with 55Mn, near free-spin g-values, and a small, almost isotropic coupling to 207Pb. The form of the A(55Mn) and g-tensor components suggest an orbital of dz2 symmetry on manganese for the unpaired electron, but this cannot be directed along the MnPb bond since the 207Pb hyperfine coupling indicates a very low spin-density on lead. We suggest that the centre is formed by electron addition to manganese to give a formal d7 centre, with concomitant loss of one equatorial carbonyl ligand. We defind z as the direction of the lost ligand. A second centre, detected at high gain, having a large hyperfine coupling to 207Pb and a 31 G coupling to 55Mn is tentatively identified as the parent cation.In marked contrast, the molecule (CO)4CoPbPh3 gave a single centre having comparable 59Co hyperfine and g-tensor components, but also a very large hyperfine coupling to 207Pb (ca. 3300 G). Thus, in this case, an electron gain centre (d9) has been formed, the electron being accomodated in the highest MO having a large dz2 component on cobalt (z being now the CoPb direction).Reasons for the adoption of these different structures are discussed.  相似文献   

6.
The presented results attempt to approximate the proper structure of the radical formed as a result of the oxidation of 1,2,3-propanetriol. To fulfil the aim unstable radical originated in 1,2,3-propanetriol was trapped by PBN. Resulted spin adduct was measured using EPR spectroscopy and the isotropic hyperfine coupling constants aiso(14N) and aiso(1H) were obtained by simulation of the EPR spectrum. The next step consisted of conducting a comparative analysis of EPR parameters, based on the calculations conducted at the DFT and MP2 methods level in open-shell formalism including solvent effects. For comparison, calculations were also carried out at the level of combined methods (UB3LYP/QCISD and UMP2/QCISD) in terms of the ONIOM formalism. Comparison of the experimental EPR data of the isotropic hyperfine coupling constants aiso(14N) and aiso(1H) with the calculated parameters indicate that oxidation of 1,2,3-propanetriol leads to a carbon centred radical where unpaired electron is situated on the second (middle) carbon of 1,2,3-propanetriol. What is important, this conclusion could be made regardless of the chosen calculation method. However, it could be stated that for calculation of the isotropic hyperfine coupling constants aiso(14N) and aiso(1H) of PBN/gly• adducts, UMP2 polarisable conductor calculation model with two ethanol molecules is explicitly defined.  相似文献   

7.
A variety of density functional methods have been evaluated in the computation of electronic g-tensors and molybdenum hyperfine couplings for systems ranging from the Mo atom through MoIIIN, [MoVOCl4]-, and [MoVOF5]2- to two larger MoV complexes MoXLCl2 (X=O, S; L=tris(3,5-dimethylpyrazolyl)hydroborate anion). In particular, the influence of the molybdenum basis set and of various exchange-correlation functionals with variable admixtures of Hartree-Fock exchange on the computed EPR parameters have been evaluated in detail. Careful basis-set studies have provided a moderate-sized 12s6p5d all-electron basis on molybdenum that gives hyperfine tensors in excellent agreement with much larger basis sets and that will be useful for calculations on larger systems. The best agreement with experimental data for both hyperfine and g-tensors is obtained with hybrid functionals containing approximately 30-40% Hartree-Fock exchange. Only for MoSLCl2 does increasing spin contamination with increasing exact-exchange admixture restrict the achievable computational accuracy. In all cases, spin-orbit corrections to the hyperfine tensors are sizable and have to be included in accurate calculations. Scalar relativistic effects enhance the isotropic Mo hyperfine coupling by approximately 15-20%. Two-component g-tensor calculations with variational inclusion of spin-orbit coupling show that the Deltag parallel components in [MoVOCl4]- and [MoVOF5]2- depend on higher-order spin-orbit contributions and are thus described insufficiently by the usual second-order perturbation approaches. Computed orientations of g- and hyperfine tensors relative to each other and to the molecular framework for the MoXLCl2 complexes provide good agreement between theory and single-crystal electron paramagnetic resonance experiments. In these cases, the hyperfine tensor orientations are influenced only slightly by spin-orbit effects.  相似文献   

8.
The 17O hyperfine interaction of the water ligands and the V=O oxygen in the vanadyl aquo complex and of the water ligands in the Mn2+ aquo complex in a frozen solution were determined by W-band (95 GHz) electron-nuclear double resonance (ENDOR). Orientation selective ENDOR spectra of the vanadyl complex exhibited two distinct signals assigned to the vanadyl oxygen and the water ligands. The assignment of the signals was done based on the orientation of the principal axis system of the hyperfine interaction and through comparison with the hyperfine interaction predicted by DFT calculations. The latter showed good agreement with the experimental values thus providing clear evidence that the vanadyl oxygen is exchangeable. The interaction of the vanadyl oxygen, especially its anisotropic part, was significantly larger than that of the water oxygens due to a relatively large negative spin density on the oxygen p orbitals. The 17O hyperfine interaction of the water ligand in the Mn2+ complex was found to be similar to that of the water ligand in the vanadyl complex and was in good agreement with earlier single-crystal data. Here, due to the large thermal polarization, it was also possible to determine the absolute sign of the hyperfine coupling by selecting different EPR transitions.  相似文献   

9.
Gradient-corrected (GGA) and hybrid variants of density functional theory are used to compute geometries and 55Mn chemical shifts of MnO4 , Mn(CO)6 +, Mn2(CO)10, Mn(CO)5 X [X=H, Cl, C(O)Me], Mn(CO)5 , Mn(NO)3(CO), and Mn(C5H5)L x [L x =(CO)3, C6H6, C7H8]. For this set of compounds, substituent effects on δ(55Mn) are significantly underestimated with the pure GGA functional BPW91 and are well described with hybrid functionals such as mPW1PW91 and, in particular, B3LYP. The computed data provide evidence for solvent and counterion effects on δ(55Mn) of MnO4 and Mn(CO)6 +, respectively. The latter, in the presence of Cl, may be described as highly fluxional Mn(CO)5C(O)Cl. Electric field gradients computed with the B3LYP functional can be used for a qualitative rationalization of observed trends in 55Mn NMR line widths. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s002140020338x Received: 17 January 2002 / Accepted: 13 March 2002 / Published online: 3 June 2002  相似文献   

10.
11.
The parameters of the EPR spectra of complexes containing paramagnetic ions with an unpaired ns electron (ns 1 ions) were interpreted. The effect of the ligand spin-orbital coupling on the parameter of the Zeeman splitting was discussed. The effect of spin polarization on the parameters of hyperfine and ligand hyperfine couplings was considered. The reasons for the anomalous behavior of the EPR parameters were noted. The character of the covalent bonding was analyzed from the EPR spectra. The anomalous behavior of the parameters of ligand hyperfine couplings in tetragonal complexes with ns 1 ions was discussed.  相似文献   

12.
The 55Mn hyperfine interaction has been analysed for MN/II/ complexes of the formula: I. Mn/dtch/2 - high-spin, S=52 II. Mn/dtch/2/NO//Cl/ - low-spin, S=12, were dtch=dithiocarbamate, xanthate or thioxanthate ligand. The increasing π-acceptor properties of the ligands result in the decrease of isotropic hyperfine parameters K. This effect has been observed for both types of complexes. The axially symmetric hyperfine tensor depending on the π-properties of the ligands has been determined for the low-spin complexes. The spin polarization mechanism involving π-orbitals /xz,yz/ has been used for interpretation of the 14N superhyperfine tensor.  相似文献   

13.
The electron paramagnetic resonance (EPR) parameters (g factors and hyperfine structure constants) for Cu2+ in [Cu(ipt)(dap)H2O] n ?nH2O (ipt is isophthalic acid, dap–1,3-diaminopropane) are theoretically investigated from the high order perturbation formulas of these parameters for a 3d 9 ion in a rhombically elongated octahedron. The ligand orbital and spin-orbit coupling contributions are included from the cluster approach because of strong covalency of the system. The nearly axial anisotropies of the g factors and hyperfine structure constants are correlated to the significant elongation distortion of the five-fold coordinated Cu2+ (in a distorted square pyramidal [CuN2O3] group). Nevertheless, the perpendicular anisotropies arising from the nonequivalent planar ligands are largely concealed by the experimental uncertainties. The theoretical analysis of the EPR behaviours for [Cu(ipt)(dap)H2O] n ?nH2O would be helpful to understand the local structures and properties of this and relevant systems.  相似文献   

14.
15.
Density functional theory is used to calculate the electronic structure of the neutral flavin radical, FADH(*), formed in the light-induced electron-transfer reaction of DNA repair in cis,syn-cyclobutane pyrimidine dimer photolyases. Using the hybrid B3LYP functional together with the double-zeta basis set EPR-II, (1)H, (13)C, (15)N, and (17)O isotropic and anisotropic hyperfine couplings are calculated and explained by reference to the electron densities of the highest occupied molecular orbital and of the unpaired spin distribution on the radical. Comparison of calculated and experimental hyperfine couplings obtained from EPR and ENDOR/TRIPLE resonance leads to a refined structure for the FAD cofactor in Escherichia coli DNA photolyase. Hydrogen bonding at N3H, O4, and N5H results in significant changes in the unpaired spin density distribution and hyperfine coupling constants. The calculated electronic structure of FADH(*) provides evidence for a superexchange-mediated electron transfer between the cyclobutane pyrimidine dimer lesion and the 7,8-dimethyl isoalloxazine moiety of the flavin cofactor via the adenine moiety.  相似文献   

16.
(H+)(e-) pairs generated at the surface of polycrystalline CaO are analyzed for the first time in terms of the interaction of the unpaired electron spin with the nuclear spin of the 17O anions of the surface. CaO crystals enriched in the 17O isotope are prepared and the corresponding hyperfine coupling constants are measured in electron paramagentic resonance (EPR) spectra. The results are analyzed on the basis of cluster model density functional theory calculations. The computed hyperfine coupling constants for (H+)(e-) pairs formed on the edge, corner, and reverse corner sites of the CaO surface allow a tentative assignment of two observed spectral features to specific morphological surface sites.  相似文献   

17.
UV irradiation of mixed phosphonium–iodonium ylide in CH2Cl2 leads to formation of free radicals with lifetimes of a few minutes detected by EPR. In mixtures of ylides with acetylenes, the structure of radicals changes, and their concentration and stability increase. In the presence of acetylenes, the radicals contain ylide and acetylene residues, and their EPR spectra have hyperfine coupling constants typical for 31P nuclei in C-radicals and for 1H nuclei, depending on the acetylene structure. It has been demonstrated that the observed radical products are formed from short-lived primary radicals.  相似文献   

18.
EPR Investigations on a Copper Chelate of anα-Cyano-β-amino-dithioacryl Acid Ester EPR studies on copper(II) chelates of anα-cyano-β-amino-dithioacryl acid ester are reported. The EPR spectra were obtained from solutions, diamagnetically diluted powders, and single-crystals which are stable for a short time only. The corresponding nickel(II) chelate was used as host lattice. The 14N ligand hyperfine structure observed in the spectra is in agreement with a [CuN2S2] coordination sphere. In some orientations of the recorded angular dependencies the EPR spectra show a hyperfine splitting due to the interaction of the unpaired electron with the N? H protons. In addition spin flip satellite lines are observed in the single-crystal spectra. The g, ACu and AN tensors obtained from the powder and single-crystal spectra have an axial symmetry within the experimental errors. The unpaired electron occupies a MO which consists mainly of the copper 3dxy and the corresponding donor atom orbitals. The co-valency of the metal ligand bond is very high.  相似文献   

19.
Two new ternary complexes of manganese(II) with tris(2-benzimidazylmethyl)amine (ntb), and two different α,β-unsaturated carboxylates, {[Mn(ntb)(acrylate)](ClO4)}2?·?(H2O)·3(CH3OH) (1) and {[Mn(ntb)(α-methacrylate)](ClO4)}2·(H2O)·2(CH3OH) (2), have been synthesized and characterized by means of elemental analyses, thermal analyses, IR, UV and single crystal X-ray diffraction. In the two complexes, ntb functions as a tripodal tetradentate ligand, resulting in trigonal pyramidal geometry. In each complex, an additional ligand, acrylate anion, or α-methacrylate anion, is coordinated at the opened site trans to the apical nitrogen atom of the ntb ligand. The crystal structure of 1 shows two crystallographically independent but chemically identical [Mn(ntb)(acrylate)]+ cations. In 2, the crystal structure shows two crystallographically independent and chemically different [Mn(ntb)(a-methacrylate)]+ cations. Cyclic voltammograms of the manganese complexes indicate a quasireversible Mn3+/Mn2+ couple. The X-band EPR spectrum of the complexes exhibits a six-line manganese hyperfine pattern with g?=?2, A?=?97 (1) and 93?G (2). The spectrum confirms that the material is high-spin Mn(II).  相似文献   

20.
The EPR spectroscopic properties of the zero-valent rhodium complex [Rh(P(OPri)3)4] have been examined at both X- and Q-band frequencies. The spectra show a large, essentially axial anisotropy and ligand hyperfine coupling to four equivalent 31P phosphorous nuclei. No resolved coupling to 103Rh was detected. The data indicate a tetragonally compressed tetrahedral structure (D2d) rather than the alternative C3v geometry provisionally proposed for the related [Co(P(OMe)3)4] complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号