首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spectroscopic constants and molecular properties of the selected six diatomic anions of astrophysical and laboratory interest namely, FO, CCl, NS, ClO, ClF and AlS in their ground state have been studied in detail using hybrid HF/DF B3LYP method. The effect of basis set on spectroscopic properties has been studied with systematic improvement of basis set from aug-cc-pVDZ to aug-cc-pV5Z. The values of the spectroscopic constants and molecular properties obtained with these basis sets have been extrapolated to the complete basis set (CBS) limit. The spectroscopic properties calculated with the aug-cc-pV5Z basis set are very close to those at the CBS limit and these values agree very well with the theoretical and experimental results wherever available. Many of the spectroscopic constants and molecular properties of these anions are new and in particular those for ClF and AlS are first reported.  相似文献   

2.
Spectroscopic constants and molecular properties of selected diatomic anions namely CN?, SiH?, PO?, SO?, SF?, and SiS? in their ground states have been studied in detail using the hybrid HF/DF B3LYP method. The consistency of the calculated values has been verified with four different basis sets, with improved quality. The spectroscopic constants and molecular properties calculated with the aug‐cc‐pVTZ basis set agree very well with the experimental and theoretical values wherever available. Most of the spectroscopic constants and molecular properties of the selected diatomic anions, particularly the spectroscopic constants and molecular properties of SO? and SiS? are reported for the first time. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

3.
Structure, spectroscopic constants and molecular properties of selected diatomic anions in their ground states have been studied in detail using HF/DF B3LYP method. The consistency of the calculated values of spectroscopic constants and molecular properties has been tested using four basis sets with improved quality. The spectroscopic constants and molecular properties of these diatomic ions agree well with the experimental and theoretical values wherever available. Most of the spectroscopic constants and molecular properties of these ions, in particular the spectroscopic constants of SiO, CS and the molecular properties of SiN, CP, SiO are first reported.  相似文献   

4.
In this paper, theoretical methods developed in III are applied in calculating polarisabilities, polarisability gradients and field-induced shifts, by the finite-field method. Values of dipole moment gradients and higher-order moments, calculated from the unperturbed wavefunctions, are also reported. Results for N2, CO, CN?, HCN and HNC have been obtained at the SCF level; some CI results for the N2 polarisability components and moments and for the dipole moment gradients of HCN are also given. The calculated polarisability gradients and dipole moment gradients have been used to estimate the Raman scattering intensities and depolarisation ratios and the IR absorption intensities. Model calculations of field-induced shifts in bond length, vibrational levels, spectroscopic constants, force constants and dipole moment gradient are reported for N2 and CO.The discrepancy between the SCF and experimental bond dipole moment gradients for HCN, previously noted in the literature, has been re-examined and resolved by our CI results.  相似文献   

5.
The electromagnetic non-bonded interactions of BH2NBH2 molecule inside the B15N15 ring has been investigated with B3LYP method using EPR-II and EPR-III basis sets. Optimized structures, relative stability, and hyperfine spectroscopic parameters, such as total atomic charges, spin densities, electrical potential, and isotropic Fermi coupling constants of radical, cationic, and anionic forms of BH2NBH2 in different loops and bonds have been calculated. The spectral properties have been contributed to explain the characteristics of hyperfine electronic structure. The calculation for the B15N15–BH2NBH2 system and then for adenine–thymine base pairs coupled with BH2NBH2 molecule inside the B15N15 ring (A–BNB–T) have been done and three quantized rotational frequencies for transitions among cationic, radical, and anionic have been calculated, too. All observed frequencies appeared in the IR rotational region. So, this system can be used for the measurement of rotational spectra related to electrical voltage differences existing in macromolecules such as proteins and DNA and membrane. Extensive calculations have been carried out on the radical, anionic, and cationic forms of BH2NBH2 to obtain data and it has been observed that the radial coordinate of the dipole moment vector (r) as well as the voltage differences (ΔV) and relative energies (ΔE) exhibited Gaussian distribution. We have obtained a relationship between dipole moments and the voltage differences and energies of system.  相似文献   

6.
Ab initio and density functional theory (DFT) are applied to study the spectroscopic constants, molecular properties, and nature of force between two rare gas atoms of the weakly bound diatomic molecules He2, Ne2, Ar2, HeNe, and HeAr in the Lennard‐Jones potential. A simple method is developed to calculate the spectroscopic constants of these molecules. The calculated spectroscopic constants and molecular properties agree very well with the experimental and theoretical results wherever available. Most of the spectroscopic constants and molecular properties are reported for the first time. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

7.
We have investigated the potential energy curves (PECs) of the LiN heteronuclear diatomic molecule, including its ionic species LiN+ and LiN, using explicitly correlated multi-reference configuration interaction (MRCI-F12) calculations in conjunction with the correlation consistent quintuple-𝜁 basis set. The effect of core–valence correlation, scalar relativistic effects, and the size of the basis sets has been investigated. A comprehensive set of spectroscopic constants determined based on the above-mentioned calculations are also reported for the lowest electronic states and all systems, including dissociation energies, harmonic and anharmonic vibrational frequencies, and rotational constants. Additional parameters, such as the dipole moments, equilibrium spin-orbit constants, excitation energies, and rovibrational energy levels, are also documented. We found that the three triplet states of LiN, namely, X 3, A 3Π, and 2 3, exhibit substantial potential wells in the PEC diagrams, while the quintet states are repulsive in nature. The ground state of the anion also shows a deep potential well in the vicinity of its equilibrium geometry. In contrast, the ground and excited states of the cation are very loosely bound. Charge transfer properties of each of these states are also analyzed to obtain an in-depth understanding of the interatomic interactions. We found that the core–valence correlation has a substantial effect on the calculated spectroscopic constants.  相似文献   

8.
Ab initio valence bond calculations for the ground and excited states of HF and HF+ are presented. Total energies, equilibrium geometries, dissociation energies, dipole moments, and spectroscopic constants for HF and HF+ have been calculated. The photoelectron spectrum of HF has been examined and interpreted by means of the valence bond formalism. The ground state of the protonated species H2F+ has been investigated.  相似文献   

9.
The molecular structure of gaseous OVF3 has been determined by electron diffraction to be: rg(V-O) = 1.570(5) Å, rg(V-F) = 1.729(2) Å and ∠α(OVF) = 107.5(4)°. A modified force field has been fitted to results from spectroscopic as well as diffractional studies. A similar attempt to determine the force field for OVCl3 was not as successful as for OVF3, probably because the Coriolis constants are less accurately determined for that molecule.  相似文献   

10.
Adduct formation has been studied in the systems of uridine 5′-monophosphate (UMP) with adenosine (Ado), cytidine (Cyd), thymidine (Thd), adenosine 5′-monophosphate (AMP), and cytidine 5′-monophosphate (CMP) by the potentiometric method with computer analysis of the data and 13C and 31P NMR spectroscopic measurements. It has been established that in the complexes identified, ion–dipole and dipole–dipole interactions occur with the positive reaction centers being protonated nitrogen atoms N(3) of UMP or Thd, and at low pH values, endocyclic nitrogen atoms of the other nucleosides and nucleotides, as e.g., in (UMP)H2(Ado). The negative reaction centers are the high-electron density atoms N(1) and N(7) from Ado or AMP and N(3) from Cyd or CMP, and the phosphate group of the nucleotides studied, which already undergo partial deprotonation at low pH values. The NMR results have established the presence of noncovalent stacking-type interactions in certain molecular complexes, e.g., (UMP)H2(AMP). The sites of ion–dipole or dipole–dipole interactions are generated as a result of deprotonation of the nucleosides and nucleotides in the pH range of formation of molecular complexes. Analysis of the equilibrium constants of the reaction allowed a determination of the effectiveness of the phosphate groups and donor atoms of heterocyclic rings in the process of molecular complex formation.  相似文献   

11.
Highly accurate ab initio computations of the molecular structure and properties, torsional potential energy function, and harmonic force field of disilane and ethane have been carried out. Equilibrium parameters as well as vibrational corrections have been evaluated. In addition, for these systems a vibrational averaging procedure has been employed for calculating the dipole moment of molecules which have no permanent dipole moment, i.e., SiH(3)SiD(3) and CH(3)CD(3). The molecular and spectroscopic properties calculated for ethane and its isotopomers provide a calibration against known experimental data, allowing us to estimate the reliability of our computed results for disilane for which there is much less experimental data. The goal of the present study is to predict the molecular parameters, with estimated uncertainties, that determine the microwave spectrum of SiH(3)SiD(3).  相似文献   

12.
New psudopotentials of higher quality have been used in ab initio molecular calculations. Simple molecular systems like Li2, LiH, and BeH2 have been investigated with varying basis sets. Energy, geometrical parameters, and dipole moments have been determined. The convergence properties of the various quantities have been investigated. They show characteristic behavior, e.g., stationary value for the energy where such behavior may be expected.  相似文献   

13.
Potential-energy curves of the 3d dimer series Sc2 through Cu2 are calculated for the lowest closed-shell states within the nonempirical RHF formalism using limited basis sets of minimal to near-double-zeta–plus-polarization size. Calculated spectroscopic constants are compared to semiempirical results as well as to experimental estimates. The possibility for closed- or open-shell ground states is discussed for each dimer. For diatomic Sc and Cu a detailed study of basis set effects on calculated molecular constants is carried out.  相似文献   

14.
The molecules methylberyllium fluoride and methylmagnesium fluoride have been studied using a priori electronic structure theory. Self-consistent-field wavefunctions have been computed over a double zeta basis set of contracted gaussian functions. The geometrical structure of each molecule has been predicted assuming the three heavy atoms are collinear. For CH3 BeF, the predicted C-Be and Be-F distances are 1.70 and 1.40 Å. For CH3MgF, the analogous bond distances are 2.08 Å and 1.78 Å. A number of molecular properties have been predicted including dipole moments, which are 1.75 and 2.38 debye for CH3BeF and CH3MgF.  相似文献   

15.
The Raman spectra (3200–100 cm−1) of epifluorohydrin, OCH2CH(CH2F), in variable solvents, as well as that of the gas have been recorded and several of the bands due to the two less stable conformers have been identified. The variable solvent studies were inconclusive on the relative conformer stabilities. The conformational energy differences and optimized geometries for all three conformers have been obtained from ab initio calculations with the 3–21G, 4–31G and 6–31G* basis sets. A normal coordinate analysis has also been performed for each conformer with a force field determined from the 3–21G basis set. Assignment of the vibrational fundamentals observed in the Raman spectra of the fluid phases is proposed based on the normal coordinate calculations. In the liquid phase, one of the conformers with a large dipole moment predominates and it appears to be the gauche-I form which is the only one found in the solid. Utilizing the three rotational constants previously reported for each conformer, along with restricted relative distances for several of the structural parameters among the conformers from ab initio calculations, r0 structural parameters for the heavy atoms have been determined.  相似文献   

16.
Fully relativistic four-component energy-adjusted pseudopotentials and corresponding valence basis sets have been derived for the alkaline atoms Li through Cs, treating them as one-valence electron systems. Core-valence correlation effects are accounted for by a core-polarization potential, deviations of the core-nucleus repulsion from a point charge model by a suitable correction. The results of Dirac-Hartree-Fock and configuration interaction calculations are presented for atomic properties not used in the pseudopotential adjustment, i.e. electron affinities and dipole polarizabilities, as well as for the spectroscopic constants of the ground states of the alkaline monohydrides. The analytic form of the cut-off function for the electric field in the core-polarization term and its effects on atomic and molecular properties is discussed.  相似文献   

17.
The reaction of some 5,5-dimethyl-2-thiohydantoin derivatives (X = O, S; R, R′ = H, Me) with molecular diiodine has been studied in CH2Cl2 solution by different spectroscopic techniques. The formation constants (K) of the 1 : 1 molecular adducts and their thermodynamic parameters have been measured by UV-visible spectroscopy. The results allow us to point out the different donor properties of C(2) = S thioketonic sulfur between the two series of compounds (X = O, S) and the influence of N(1) and N(3) methylation on the K's. From the analysis of the ν(NH) frequencies, it has been possible to show hydrogen bond interactions between the NH's and the S-bonded iodine; this seems to be an important factor in determining the K values.  相似文献   

18.
氨基甲酸酯型脱氧胆酸分子钳对中性分子的识别性能研究   总被引:3,自引:0,他引:3  
利用差紫外光谱法考察了新型分子钳16对苯胺、对硝基苯胺、对甲氧基苯胺等中性分子的识别性能, 测定了25 ℃下, 在CHCl3中主客体间的结合常数(Ka)和自由能变化(ΔG0). 结果表明, 所有分子钳主体对所考察的客体分子显示良好的识别作用, 主客体间形成1∶1型主客体络合物. 识别作用的主要推动力为多重氢键和π-π重叠等的作用. 讨论了主客体间形状、大小匹配和几何互补及识别模式等因素对识别能力的影响, 并利用核磁共振氢谱与计算机模拟作为辅助手段对实验结果进行了解释.  相似文献   

19.
The molar Kerr constants and dipole moments at infinite dilution in CCl4 have been measured for these compounds and also for dicyclopentadiene dioxide and the oxides of ethylene, propylene, and tetramethylethylene. The dipole moment indicates an exo-oxide structure for endo-cyanonorbornene, and this fact is used with the Kerr constants for endo-cyanonorbornene and ethylene oxide to calculate the axes of the polarizability ellipsoid for the oxide ring: b1 (along the symmetry axis), b2 (in plane of ring), and b3 (perpendicular to plane of ring). The Kerr constants for propylene and tetramethylethylene oxides have been used to determine the anisotropy in the polarizability of the C-C bond adjoining the oxide ring. The results demonstrate an exo mode of oxidation of all substituted norbornenes and an exo-exo structure for dicyclopentadiene dioxide.  相似文献   

20.
Summary The first-order polarized basis sets for the use in high-level-correlated investigations of molecular electric properties have been generated for Pb, Bi, Po, and At. The performance of the standard [10.17.14.5/13.11.8.2] and extended [20.17.14.9/13.11.8.4] basis sets has been examined in nonrelativistic and quasirelativistic calculations for atoms and simple closed-shell hydrides. The relativistic contributions to electric dipole properties of those systems have been evaluated by using the recently developed quasirelativistic scheme. The predicted dipole polarizability of At is in good agreement with the results of other relativistic calculations. The calculated quasirelativistic dipole moments of BiH3 (–0.499 a.u.), PoH2 (–0.207 a.u.), and AtH (+0.036 a.u.) involve a significant relativistic contribution which amounts to —0.230 a.u., –0.177 a.u., and –0.097 a.u., respectively. The basis set details append this paper. They are also available as a part of the basis set library of the MOLCAS system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号