首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider the single-machine bicriterion scheduling problem of enumerating the Pareto-optimal sequences with respect to the total weighted completion time and the maximum lateness objectives. We show that the master sequence concept originally introduced for 1|rj|∑wjUj by Dauzère-Pérès and Sevaux is also applicable to our problem and a large number of other sequencing problems. Our unified development is based on exploiting common order-theoretic structures present in all these problems. We also show that the master sequence implies the existence of global dominance orders for these scheduling problems. These dominance results were incorporated into a new branch and bound algorithm, which was able to enumerate all the Pareto optima for over 90% of the 1440 randomly generated problems with up to n=50 jobs. The identification of each Pareto optimum implicitly requires the optimal solution of a strongly NP-hard problem. The instances solved had hundreds of these Pareto solutions and to the best of our knowledge, this is the first algorithm capable of completely enumerating all Pareto sequences within reasonable time and space for a scheduling problem with such a large number of Pareto optima.  相似文献   

2.
In this paper we consider the scheduling problem of minimizing the weighted number of late jobs on a single machine (1|rj|∑wjUj)1|rj|wjUj. A branch-and-check algorithm is proposed, where a relaxed integer programming formulation is solved by branch-and-bound and infeasible solutions are cut off using infeasibility cuts. We suggest two ways to generate cuts. First, tightened “no-good” cuts are derived using a modification of the algorithm by Carlier (1982, EJOR, v.11, 42–47) which was developed for the problem of minimizing maximum lateness on a single machine. Secondly we show how to create cuts by using constraint propagation. The proposed algorithm is implemented in the Mosel modelling and optimization language. Computational experiments on instances with up to 140 jobs are reported. A comparison is presented with the exact approach of Péridy at al. (2003, EJOR, v.148, 591–603).  相似文献   

3.
The classical NP-hard (in the ordinary sense) problem of scheduling jobs in order to minimize the total tardiness for a single machine 1‖ΣT j is considered. An NP-hard instance of the problem is completely analyzed. A procedure for partitioning the initial set of jobs into subsets is proposed. Algorithms are constructed for finding an optimal schedule depending on the number of subsets. The complexity of the algorithms is O(n 2Σp j ), where n is the number of jobs and p j is the processing time of the jth job (j = 1, 2, …, n).  相似文献   

4.
Consider a single machine and a set of n jobs that are available for processing at time 0. Job j has a processing time pj, a due date dj and a weight wj. We consider bi-criteria scheduling problems involving the maximum weighted tardiness and the number of tardy jobs. We give NP-hardness proofs for the scheduling problems when either one of the two criteria is the primary criterion and the other one is the secondary criterion. These results answer two open questions posed by Lee and Vairaktarakis in 1993. We consider complexity relationships between the various problems, give polynomial-time algorithms for some special cases, and propose fast heuristics for the general case. The effectiveness of the heuristics is measured by empirical study. Our results show that one heuristic performs extremely well compared to optimal solutions.  相似文献   

5.
We study how to efficiently schedule online perfectly malleable parallel jobs with arbitrary arrival times on m ? 2 processors. We take into account both the linear speedup of such jobs and their setup time, i.e., the time to create, dispatch, and destroy multiple processes. Specifically, we define the execution time of a job with length pj running on kj processors to be pj/kj + (kj − 1)c, where c > 0 is a constant setup time associated with each processor that is used to parallelize the computation. This formulation accurately models data parallelism in scientific computations and realistically asserts a relationship between job length and the maximum useful degree of parallelism. When the goal is to minimize makespan, we show that the online algorithm that simply assigns kj so that the execution time of each job is minimized and starts jobs as early as possible has competitive ratio 4(m − 1)/m for even m ? 2 and 4m/(m + 1) for odd m ? 3. This algorithm is much simpler than previous offline algorithms for scheduling malleable jobs that require more than a constant number of passes through the job list.  相似文献   

6.
We study a single-machine scheduling problem with periodic maintenance activity under two maintenance stratagems. Although the scheduling problem with single or periodic maintenance and nonresumable jobs has been well studied, most of past studies considered only one maintenance stratagem. This research deals with a single-machine scheduling problem where the machine should be stopped for maintenance after a fixed periodic interval (T) or after a fixed number of jobs (K) have been processed. The objective is to minimize the makespan for the addressed problem. A two-stage binary integer programming (BIP) model is provided for driving the optimal solution up to 350-job instances. For the large-sized problems, two efficient heuristics are provided for the different combinations of T and K. Computational results show that the proposed algorithm Best-Fit-Butterfly (BBF) performs well because the total average percentage error is below 1%. Once the constraint of the maximum number of jobs (K) processed in the machine’s available time interval (T) is equal or larger than half of jobs, the heuristic Best-Fit-Decreasing (DBF) is strongly recommended.  相似文献   

7.
We present new approximation algorithms for the problem of scheduling precedence-constrained jobs on parallel machines that are uniformly related. That is, there arenjobs andmmachines; each jobjrequirespjunits of processing, and is to be processed on one machine without interruption; if it is assigned to machinei, which runs at a given speedsi, it takespj/sitime units. There also is a partial order on the jobs, wherej kimplies that jobkmay not start processing until jobjhas been completed. We consider two objective functions:Cmax = maxj Cj, whereCjdenotes the completion time of jobj, and ∑jwjCj, wherewjis a weight that is given for each jobj. For the first objective, the best previously known result is an -approximation algorithm, which was shown by Jaffe more than 15 years ago. We give anO(log m)-approximation algorithm. We also show how to extend this result to obtain anO(log m)-approximation algorithm for the second objective, albeit with a somewhat larger constant. These results also extend to settings in which each jobjhas a release daterjbefore which the job may not begin processing. In addition, we obtain stronger performance guarantees if there are a limited number of distinct speeds. Our results are based on a new linear programming-based technique for estimating the speed at which each job should be run, and a variant of the list scheduling algorithm of Graham that can exploit this additional information.  相似文献   

8.
We investigate the problems of scheduling n weighted jobs to m parallel machines with availability constraints. We consider two different models of availability constraints: the preventive model, in which the unavailability is due to preventive machine maintenance, and the fixed job model, in which the unavailability is due to a priori assignment of some of the n jobs to certain machines at certain times. Both models have applications such as turnaround scheduling or overlay computing. In both models, the objective is to minimize the total weighted completion time. We assume that m is a constant, and that the jobs are non-resumable.For the preventive model, it has been shown that there is no approximation algorithm if all machines have unavailable intervals even if wi=pi for all jobs. In this paper, we assume that there is one machine that is permanently available and that the processing time of each job is equal to its weight for all jobs. We develop the first polynomial-time approximation scheme (PTAS) when there is a constant number of unavailable intervals. One main feature of our algorithm is that the classification of large and small jobs is with respect to each individual interval, and thus not fixed. This classification allows us (1) to enumerate the assignments of large jobs efficiently; and (2) to move small jobs around without increasing the objective value too much, and thus derive our PTAS. Next, we show that there is no fully polynomial-time approximation scheme (FPTAS) in this case unless P=NP.For the fixed job model, it has been shown that if job weights are arbitrary then there is no constant approximation for a single machine with 2 fixed jobs or for two machines with one fixed job on each machine, unless P=NP. In this paper, we assume that the weight of a job is the same as its processing time for all jobs. We show that the PTAS for the preventive model can be extended to solve this problem when the number of fixed jobs and the number of machines are both constants.  相似文献   

9.
The scheduling problem 1|pmtn, r j |w j U j calls forn jobs with arbitrary release dates and due dates to be preemptively scheduled for processing by a single machine, with the objective of minimizing the sum of the weights of the late jobs. A dynamic programming algorithm for this problem is described. Time and space bounds for the algorithm are, respectively,O(nk 2 W 2) andO(k 2 W), wherek is the number of distinct release dates andW is the sum of the integer job weights. Thus, for the problem 1|pmtn, r j |U j , in which the objective is simply to minimize the number of late jobs, the pseudopolynomial time bound becomes polynomial, i.e.O(n 3 k 2).  相似文献   

10.
Most successful heuristics for solving 1||∑wjTj are based on swap moves. We present an algorithm which improves the complexity of searching the swap neighborhood from O(n3) to O(n2). We show that this result also improves the complexity of the recently developed dynasearch heuristics.  相似文献   

11.
Consider a scheduling problem (P) which consists of a set of jobs to be performed within a limited number of time periods. For each job, we know its duration as an integer number of time periods, and preemptions are allowed. The goal is to assign the required number of time periods to each job while minimizing the assignment and incompatibility costs. When a job is performed within a time period, an assignment cost is encountered, which depends on the involved job and on the considered time period. In addition, for some pairs of jobs, incompatibility costs are encountered if they are performed within common time periods. (P) can be seen as an extension of the multi-coloring problem. We propose various solution methods for (P) (namely a greedy algorithm, a descent method, a tabu search and a genetic local search), as well as an exact approach. All these methods are compared on different types of instances.  相似文献   

12.
This paper presents an optimal scheduling algorithm for minimizing set-up costs in the parallel processing shop while meeting workload balancing restrictions.There are M independent batch type jobs which have sequence dependent set-up costs and N parallel processing machines. Each of the M jobs must be processed on exactly one of the N available machines. It is desirable to minimize total changeover costs with the restriction that each machine workload assignment T n be within P units of the average machine assignment. The paper describes a static problem in which all jobs are available at time zero. The sequence dependent change over costs are identical for each machine. An extension of the algorithm handles nonidentical processor problems.A combinatorial programming approach to the problem is used. For the special case of identical processors, the problem can be treated as a multi-salesman travelling salesman problem. A general branch and bound algorithm and numerical results are given.  相似文献   

13.
This paper presents a branch and bound algorithm for the single machine scheduling problem 1|ri|∑Ui where the objective function is to minimize the number of late jobs. Lower bounds based on a Lagrangian relaxation and no reductions to polynomially solvable cases are proposed. Efficient elimination rules together with strong dominance relations are also used to reduce the search space. A branch and bound exploiting these techniques solves to optimality instances with up to 200 jobs, improving drastically the size of problems that could be solved by exact methods up to now.  相似文献   

14.
Flexible Job-Shop Scheduling Problem (FJSP) with Parallel Batch processing Machine (PBM) is studied. First, a Mixed Integer Programming (MIP) formulation is proposed for the first time. In order to address an NP-hard structure of this problem, the formulation is modified to selectively schedule jobs. Although there are many jobs on a given floor, semiconductor manufacturing is most challenged by priority jobs that promise a significant amount of financial compensation in exchange for an expedited delivery. This modification could leave some non-priority jobs unscheduled. However, it vastly expedites the discovery of improving solutions by first branching on integer variables with higher priority jobs. This study then turns job-dependent processing times into job-independent ones by assuming a machine has an equal processing time on different jobs. This assumption is roughly true or acceptable for the sake of the reduced computational time in the industry. These changes significantly reduce computational time compared to the original model when tested on a set of common problem instances from the literature. Computational results show that this proposed model can generate an effective schedule for large problems. Author encourages other researchers to propose an improved MIP model.  相似文献   

15.
We are interested in the minimum time T(S) necessary for computing a family S = { < Si, Sj >: ? Si, Sj?Rp, (i, j) ?E } of inner products of order p, on a systolic array of order p × 2. We first prove that the determination of T(S) is equivalent to the partition problem and is thus NP-complete. Then we show that the designing of an algorithm which runs in time T(S) + 1 is equivalent to the problem of finding an undirected bipartite eulerian multigraph with the smallest number of edges, which contains a given undirected bipartite graph, and can therefore be solved in polynomial time.  相似文献   

16.
In this note open shops with two machines are considered. The processing time of job j, j = 1, …, n, on machine 1 (2) is a random variable Xj (Yj), which is exponentially distributed with rate γ (μ). If the completion time of job j is Cj, a waiting cost is incurred of g(Cj), where g is a function that is increasing concave. The preemptive policy that minimizes the total expected waiting cost E(Σg(Cj)) is determined. Two machine open shops with jobs that have random due dates are considered as well. For the case where the due dates D1,…,Dn are exchangeable, the preemptive policy that minimizes the expected number of tardy jobs is determined.  相似文献   

17.
LetP={v 1,...,v n } be a set ofn jobs to be executed on a set ofm identical machines. In many instances of scheduling problems, if a jobv i has to be executed before the jobv j and both jobs are to be executed on different machines, some sort of information exchange has to take place between the machines executing them. The time it takes for this exchange of information is called a communication delay.In this paper we give anO(n) algorithm to find an optimal scheduling with communication delays when the number of machines is not limited and the precedence constraints on the jobs form a tree.  相似文献   

18.
In the classical sequential assignment problem, “machines” are to be allocated sequentially to “jobs” so as to maximize the expected total return, where the return from an allocation of job j to machine k is the product of the value xj of the job and the weight pk of the machine. The set of m machines and their weights are given ahead of time, but n jobs arrive in sequential order and their values are usually treated as independent, identically distributed random variables from a known univariate probability distribution with known parameter values. In the paper, we consider a rank-based version of the sequential selection and assignment problem that minimizes the sum of weighted ranks of jobs and machines. The so-called “secretary problem” is shown to be a special case of our sequential assignment problem (i.e., m = 1). Due to its distribution-free property, our rank-based assignment strategy can be successfully applied to various managerial decision problems such as machine scheduling, job interview, kidney allocations for transplant, and emergency evacuation plan of patients in a mass-casualty situation.  相似文献   

19.
This paper considers the problem of scheduling a given number of jobs on a single machine to minimize the sum of maximum earliness and maximum tardiness when sequence-dependent setup times exist (1∣ST sd ETmax). In this paper, an optimal branch-and-bound algorithm is developed that involves the implementation of lower and upper bounding procedures as well as three dominance rules. For solving problems containing large numbers of jobs, a polynomial time-bounded heuristic algorithm is also proposed. Computational experiments demonstrate the effectiveness of the bounding and dominance rules in achieving optimal solutions in more than 97% of the instances.  相似文献   

20.
This paper considers a two-machine ordered flow shop problem, where each job is processed through the in-house system or outsourced to a subcontractor. For in-house jobs, a schedule is constructed and its performance is measured by the makespan. Jobs processed by subcontractors require paying an outsourcing cost. The objective is to minimize the sum of the makespan and the total outsourcing cost. Since this problem is NP-hard, we present an approximation algorithm. Furthermore, we consider three special cases in which job j has a processing time requirement pj, and machine i a characteristic qi. The first case assumes the time job j occupies machine i is equal to the processing requirement divided by a characteristic value of machine i, that is, pj/qi. The second (third) case assumes that the time job j occupies machine i is equal to the maximum (minimum) of its processing requirement and a characteristic value of the machine, that is, max{pjqi} (min{pjqi}). We show that the first and the second cases are NP-hard and the third case is polynomially solvable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号