首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To understand the mechanism of interaction between peptides and peptides with hydrophobic ligands, the oligomers (GWG, GWWG, GWWWG) were designed and synthesized to study adsorption behavior with octyl sepharose and CM-octyl sepharose. By batch equilibrium binding analysis and dilution heat of peptide solution measurement, the binding isotherm and adsorption enthalpy were obtained and the binding thermodynamics parameters were calculated and analyzed. In the isotherm analysis, we reveled that the affinity of GWG for both adsorbents is stronger than that of GWWG and GWWWG. The results demonstrate that the cation-pi interaction between the peptides and the buffer molecules is significant for solutions of peptides with tryptophan residues, and the solvation is competitive with the hydrophobic interaction between the peptides and the hydrophobic ligands. From the dilution heat measurements, we observed an endothermic dilution heat for GWG and exothermic for GWWG and GWWWG. All these results indicate that the increased tryptophan chain length can promote the solvation behavior of the peptides by the peptide-buffer interaction in this buffer system. Comparing the types of ligands reveals that the binding affinities of each peptide for the two adsorbents are similar. However, the mechanism of adsorption for peptides with hydrophobic ligands might be quite different with respect to the binding enthalpy between peptides and adsorbents. The adsorption of the peptides on octyl sepharose is an entropy-driven process for all the peptides. In contrast, the adsorption of CM-octyl sepharose with GWG and GWWG is an enthalpy-driven process, whereas that with GWWWG is entropy-driven. These findings indicate that the amount of tryptophan controls the characteristics of the peptides and the interaction mechanism in the binding procedure. This study of the adsorption mechanism of the designed peptide could provide fundamental information for peptide purification and amino acid residue behavior in peptide drug design.  相似文献   

2.
In this study we investigated the interaction behavior between thirteen different small peptides and a hydrophobic surface using three progressively more complex methods of representing solvation effects: a united-atom implicit solvation method [CHARMM 19 force field (C19) with Analytical Continuum Electrostatics (ACE)], an all-atom implicit solvation method (C22 with GBMV), and an all-atom explicit solvation method (C22 with TIP3P). The adsorption behavior of each peptide was characterized by the calculation of the potential of mean force as a function of peptide-surface separation distance. The results from the C22/TIP3P model suggest that hydrophobic peptides exhibit relatively strong adsorption behavior, polar and positively-charged peptides exhibit negligible to relatively weak favorable interactions with the surface, and negatively-charged peptides strongly resist adsorption. Compared to the TIP3P model, the ACE and GBMV implicit solvent models predict much stronger attractions for the hydrophobic peptides as well as stronger repulsions for the negatively-charged peptides on the CH(3)-SAM surface. These comparisons provide a basis from which each of these implicit solvation methods may be reparameterized to provide closer agreement with explicitly represented solvation in simulations of peptide and protein adsorption to functionalized surfaces.  相似文献   

3.
The adsorption kinetics of an engineered gold binding peptide on gold surface was studied by using both quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) spectroscopy systems. The gold binding peptide was originally selected as a 14-amino acid sequence by cell surface display and then engineered to have a 3-repeat form (3R-GBP1) with improved binding characteristics. Both sets of adsorption data for 3R-GBP1 were fit to Langmuir models to extract kinetics and thermodynamics parameters. In SPR, the adsorption onto the surface shows a biexponential behavior and this is explained as the effect of bimodal surface topology of the polycrystalline gold substrate on 3R-GBP1 binding. Depending on the concentration of the peptide, a preferential adsorption on the surface takes place with different energy levels. The kinetic parameters (e.g., K(eq) approximately 10(7) M(-1)) and the binding energy (approximately -8.0 kcal/mol) are comparable to synthetic-based self-assembled monolayers. The results demonstrate the potential utilization of genetically engineered inorganic surface-specific peptides as molecular substrates due to their binding specificity, stability, and functionality in an aqueous-based environment.  相似文献   

4.
This preliminary investigation tests the premise that biologically relevant (1) peptide-metal ion interactions, and (2) metal ion-dependent macromolecular recognition events (e.g., peptide-peptide interactions) may be modeled by biomimetic affinity chromatography. Divinylsulfone-activated agarose (6%) was used to immobilize three different synthetic peptides representing metal-binding protein surface domains from the human plasma metal transport protein histidine-rich glycoprotein (HRG). The synthetic peptides represented 1-3 multiple repeat units of the 5-residue sequence (Gly-His-His-Pro-His) found in the C-terminal of HRG. By frontal analyses, immobilized HRG peptides of the type (GHHPH)nG, where n = 1-3, were each found to have a similar binding capacity for both Cu(II) ions and Zn(II) ions (31-38 mumol/ml gel). The metal ion-dependent interaction of a variety of model peptides with each of the immobilized HRG peptide affinity columns demonstrated differences in selectivity despite the similar internal sequence homology and metal ion binding capacity. The immobilized 11-residue HRG peptide was loaded with Cu(II) ions and used to demonstrate selective adsorption and isolation of proteins from human plasma. These results suggest that immobilized metal-binding peptides selected from known solvent-exposed protein surface metal-binding domains may be useful model systems to evaluate the specificity of biologically relevant metal ion-dependent interaction and transfer events in vitro.  相似文献   

5.
Sequence, structure, and function of peptide self-assembled monolayers   总被引:1,自引:0,他引:1  
Cysteine is commonly used to attach peptides onto gold surfaces. Here we show that the inclusion of an additional linker with a length of four residues (-PPPPC) and a rigid, hydrophobic nature is a better choice for forming peptide self-assembled monolayers (SAMs) with a well-ordered structure and high surface density. We compared the structure and function of the nonfouling peptide EKEKEKE-PPPPC-Am with EKEKEKE-C-Am. Circular dichroism, attenuated total internal reflection Fourier transform IR spectroscopy, and molecular dynamics results showed that EKEKEKE-PPPPC-Am forms a secondary structure while EKEKEKE-C-Am has a random structure. Surface plasmon resonance sensor results showed that protein adsorption on EKEKEKE-PPPPC-Am/gold is very low with small variation while protein adsorption on EKEKEKE-C-Am/gold is high with large variation. X-ray photoelectron spectroscopy results showed that both peptides have strong gold-thiol binding with the gold surface, indicating that their difference in protein adsorption is due to their assembled structures. Further experimental and simulation studies were performed to show that -PPPPC is a better linker than -PC, -PPC, and -PPPC. Finally, we extended EKEKEKE-PPPPC-Am with the cell-binding sequence RGD and demonstrated control over specific versus nonspecific cell adhesion without using poly(ethylene glycol). Adding a functional peptide to the nonfouling EK sequence avoids complex chemistries that are used for its connection to synthetic materials.  相似文献   

6.
The adsorption behaviors of amino acids in short chain peptides were examined. Each amino acid, aliphatic or charged, was inserted between the two tryptophans of a peptide, GWWG. The capacity factors of these peptides on an Ocytl-Sepharose column were measured. The adsorption enthalpies, entropies, and the number of repelled water molecules after adsorption were estimated to analyze the contribution of each different amino acid to its hydrophobic adsorption. The peptides inserted with aliphatic amino acids owned the highest capacity factors but released the least amount of adsorption heat among all the peptides under examination. It was found that the hydrophobic contribution of aliphatic amino acids was derived from the entropy gain by repelling the ordered water surrounding them. The insertion of negatively charged amino acids greatly reduced the capacity factors but still repelled a significant number of water molecules after adsorption. This indicated that the water molecules surrounding ionic amino acids were not orderly aligned. The dehydration cost energy but the water repelling did not offer enough entropy to drive the adsorption. Subsequently, lower retention was obtained from the peptides inserted with negatively charged ionic amino acids. The insertion of lysine increased the adsorption enthalpy but repelled no water molecules after adsorption. It was speculated that the inserted lysine still interacted with hydrophobic ligands but disturbed the interaction between ligands and adjacent tryptophans. Therefore, the adsorption enthalpy increased and the capacity factors decreased. Different amino acids contributed to hydrophobic interaction in different ways. The simultaneous analysis of capacity factor, adsorption enthalpy, adsorption entropy, and the number of repelled water molecules facilitated the understanding of the adsorption processes.  相似文献   

7.
The role of the acidic amino acid residues in the adsorption of peptides/proteins onto stainless steel particles was investigated using a peptide fragment from bovine beta-lactoglobulin, Thr-Pro-Glu-Val-Asp-Asp-Glu-Ala-Leu-Glu-Lys (T5 peptide), which has a high affinity to a stainless steel surface at acidic pHs, and its mutant peptides substituted with different numbers of acidic amino acid residues. The adsorption behavior of the mutant peptides as well as the T5 peptide were studied at pH 3 with respect to concentration and ionic strength dependencies and the reversibility of the adsorption process. The behavior of the peptides was generally characterized as two distinct irreversible adsorption modes, Mode I and Mode II. In Mode I, the amounts adsorbed lay on the ordinate at zero equilibrium concentration in the solution, while in Mode II, the amount adsorbed increased with increased equilibrium concentration. The area occupied by the peptides was predicted by molecular mechanics and molecular dynamics. The state of the peptides, when adsorbed, was investigated using FT-IR analysis. The FT-IR analyses revealed that the side carboxylic groups of the peptides adsorbed on the stainless steel surface were ionized, while they were unionized in the solution at pH 3. Thus, the interactions between the carboxylic groups of the peptide and the stainless steel surface can be considered to be largely electrostatic. The peptide having four acidic amino acid residues took a maximum adsorbed amount, the reason for which is discussed.  相似文献   

8.
Control over selective recognition of biomolecules on inorganic nanoparticles is a major challenge for the synthesis of new catalysts, functional carriers for therapeutics, and assembly of renewable biobased materials. We found low sequence similarity among sequences of peptides strongly attracted to amorphous silica nanoparticles of various size (15-450 nm) using combinatorial phage display methods. Characterization of the surface by acid base titrations and zeta potential measurements revealed that the acidity of the silica particles increased with larger particle size, corresponding to between 5% and 20% ionization of silanol groups at pH 7. The wide range of surface ionization results in the attraction of increasingly basic peptides to increasingly acidic nanoparticles, along with major changes in the aqueous interfacial layer as seen in molecular dynamics simulation. We identified the mechanism of peptide adsorption using binding assays, zeta potential measurements, IR spectra, and molecular simulations of the purified peptides (without phage) in contact with uniformly sized silica particles. Positively charged peptides are strongly attracted to anionic silica surfaces by ion pairing of protonated N-termini, Lys side chains, and Arg side chains with negatively charged siloxide groups. Further, attraction of the peptides to the surface involves hydrogen bonds between polar groups in the peptide with silanol and siloxide groups on the silica surface, as well as ion-dipole, dipole-dipole, and van-der-Waals interactions. Electrostatic attraction between peptides and particle surfaces is supported by neutralization of zeta potentials, an inverse correlation between the required peptide concentration for measurable adsorption and the peptide pI, and proximity of cationic groups to the surface in the computation. The importance of hydrogen bonds and polar interactions is supported by adsorption of noncationic peptides containing Ser, His, and Asp residues, including the formation of multilayers. We also demonstrate tuning of interfacial interactions using mutant peptides with an excellent correlation between adsorption measurements, zeta potentials, computed adsorption energies, and the proposed binding mechanism. Follow-on questions about the relation between peptide adsorption on silica nanoparticles and mineralization of silica from peptide-stabilized precursors are raised.  相似文献   

9.
In this study, we describe characterization of the human plasma proteome based on analysis with multifunctional chitosan-GMA-IDA-Cu(II) nanospheres. Chitosan-GMA-IDA-Cu(II) nanospheres with diameters of 20 to 100?nm have unique properties due to multifunctional chemical moieties, high surface area, high capacity, good dispersibility in buffer solution as well as good biocompatibility and chemical stability which improves their specific interaction with peptides and proteins of the human plasma using different binding buffers. Combining these chitosan-GMA-IDA-Cu(II) nanospheres with MS spectrometry results in a novel strategy which should make it possible to characterize the plasma proteome in a single test. Peptides and proteins adsorbed on the nanosphere can be directly detected by MALDI-TOF-MS. The eluted lower molecular weight peptides and proteins are identified by nano-LC-ESI-MS/MS. A total of 842 unique LMW peptides and 1,682 human unredundant proteins IDs were identified in two different binding buffers, which included relatively low-level proteins (e.g., pg/mL of IL3 Interleukin-3) co-distributed with high-abundance proteins (e.g., 35?C55?mg/mL level serum albumin). As such, this nanosphere technique selectively enabled the identification of proteins over a dynamic range of greater than 8 orders of magnitude. Considering this capacity for selective enrichment of peptides and proteins in human plasma, and the large number of LMW peptides and proteins which can be identified, this method promises to accelerate discovery of biomarkers for clinical application.
Figure
The human plasma proteome based on analysis with multifunctional chitosan-GMA-IDA-Cu(II) nanospheres which improves their specific interaction with peptides and proteins of the human plasma using different binding buffers. Combining these chitosan-GMA-IDA-Cu(II) nanosphere with MS spectrometry, results in a novel strategy which should make it possible to characterize the plasma proteome in a single test.  相似文献   

10.
Characterization of the oligomerization of membrane-associated peptides is important to understand the folding and function of biomolecules like antimicrobial peptides, fusion peptides, amyloid peptides, toxins, and ion channels. However, this has been considered to be very difficult, because the amphipathic properties of the constituents of the cell membrane pose tremendous challenges to most commonly used biophysical techniques. In this study, we present the application of a simple (14)N solid-state NMR spectroscopy of aligned model membranes containing a phosphatidyl choline lipid to investigate the oligomerization of membrane-associated peptides. Since the near-symmetric nature of the choline headgroup of a phosphocholine lipid considerably reduces the (14)N quadrupole coupling, there are significant practical advantages in using (14)N solid-state NMR experiments to probe the interaction of peptide or protein with the surface of model membranes. Experimental results for several membrane-associated peptides are presented in this paper. Our results suggest that the experimentally measured (14)N quadrupole splitting of the lipid depends on the peptide-induced changes in the electrostatic potential of the lipid bilayer surface and therefore on the nature of the peptide, peptide-membrane interaction, and peptide-peptide interaction. It is inferred that the membrane orientation and oligomerization of the membrane-associated peptides can be measured using (14)N solid-state NMR spectroscopy.  相似文献   

11.
Qiao Y  Li P  Chen Y  Feng J  Wang J  Wang W  Ma Y  Sun P  Yuan Z 《Journal of chromatography. A》2010,1217(48):7539-7546
A major challenge in the development of affinity adsorbents is the design of specific adsorbents for target molecules. In this paper, a two-step strategy was used to design a specific adsorbent for oligopeptides. Based on the structural characteristics of target peptide DFLAE (DE5), the affinity ligand CDenHis bearing hydrophobic inclusion and electrostatic interaction sites was prepared by grafting histidine onto β-cyclodextrin (CD) using ethylenediamine; ligands with single hydrophobic inclusion or electrostatic interaction sites (CDen and HisOMe) were used as reference ligands. Results indicated that the binding affinity (K(a)) of CDenHis with DE5 was 6.23×10(4)M(-1), 23- and 61-fold higher than that of CDen and HisOMe, respectively. Computer simulations were used to further optimize the steric configuration of CDenHis. It was found that the optimized ligand CDdnHis exhibited a much improved binding affinity for DE5 (K(a)=1.02×10(5)M(-1)). Moreover, the corresponding adsorbent A-CDdnHis not only showed much better adsorption ability compared with A-CDenHis, but also excellent adsorption specificity for DE5-containing peptides. Kinetic analysis and adsorption mechanism studies suggested that the configuration matching of CDdnHis with DE5 and the cooperation of multiple interactions led to the fast and selective adsorption of DE5-containing peptides to A-CDdnHis.  相似文献   

12.
设计合成了蜂毒肽片断及其类似物: Mel15, Mel15(8F)和Mel15(7P), 这些多肽与钙调素有很强的结合力, 而且链段很短, 因此它们可作为钙调素可结合蛋白质的结合部位的模型。本文采用光谱法研究了它们与钙调素的相互作用。荧光发射光谱法结果表明, 多肽Mel15在与钙调素相互作用时, 肽链中的Trp基团的微环境变得更加疏水, 说明Mel15中的Trp残基可能与钙调素的疏水性表面靠近。紫外差谱测试表明, 只有当钙调素分子结合2个Ca^2^+后, 才可以与多肽Mel15(8F)结合。圆二色谱法研究表明, 多肽与钙调素结合后多肽分子和钙调素分子的α-螺旋结构的含量都被诱导而增加, 结合力越大, 则越多的残基被诱导形成α-螺旋结构。  相似文献   

13.
Despite extensive recent reports on combinatorially selected inorganic-binding peptides and their bionanotechnological utility as synthesizers and molecular linkers, there is still only limited knowledge about the molecular mechanisms of peptide binding to solid surfaces. There is, therefore, much work that needs to be carried out in terms of both the fundamentals of solid-binding kinetics of peptides and the effects of peptide primary and secondary structures on their recognition and binding to solid materials. Here we discuss the effects of constraints imposed on FliTrx-selected gold-binding peptide molecular structures upon their quantitative gold-binding affinity. We first selected two novel gold-binding peptide (AuBP) sequences using a FliTrx random peptide display library. These were, then, synthesized in two different forms: cyclic (c), reproducing the original FliTrx gold-binding sequence as displayed on bacterial cells, and linear (l) dodecapeptide gold-binding sequences. All four gold-binding peptides were then analyzed for their adsorption behavior using surface plasmon resonance spectroscopy. The peptides exhibit a range of binding affinities to and adsorption kinetics on gold surfaces, with the equilibrium constant, Keq, varying from 2.5x10(6) to 13.5x10(6) M(-1). Both circular dichroism and molecular mechanics/energy minimization studies reveal that each of the four peptides has various degrees of random coil and polyproline type II molecular conformations in solution. We found that AuBP1 retained its molecular conformation in both the c- and l-forms, and this is reflected in having similar adsorption behavior. On the other hand, the c- and l-forms of AuBP2 have different molecular structures, leading to differences in their gold-binding affinities.  相似文献   

14.
Two tetrapeptide derivatives [peptide A (Boc–Ala–Ile–Ile–Gly–OMe) and peptide B (Boc–Ala–Ile–Leu–Ser–OMe)], that take helical turn conformation in solution, were shown to form monolayer at the air/water interface. Circular dichroism (CD) measurements indicate that peptide A has more helical turn propensity than peptide B in sodium dodecyl sulphate (SDS) micelles. Langmuir–Blodgget film study of peptides A and B suggest that both the peptides form stable monolayer at the air/water interface. Spectroscopic investigations reveal that peptide A forms helical turn assemblage on transferring the film into hydrophilic quartz and hydrophobic ZnSe surfaces. Whereas, peptide B adopts β-sheet structure on hydrophilic surface and a mixture of β-sheet and helical turn conformation on hydrophobic surface.  相似文献   

15.
Detailed structural comparisons and investigation of DPI, 2 Zn insulin and some other derivatives of insulin were performed by the least-squares superimposition technique and the graphics technique. It is pointed out in this paper that the binding interaction with the receptor molecule should take place mainly on an amphipathic surface of the insulin molecule. In the middle, there is a hydrophobic surface with an area of about 150 A2 consisting of many hydrophobic residues; while the polar or charged groups distributing around the hydrophobic surface construct a hydrophilic zone. The hydrophobic surface is usually covered by the extended B-chain C-terminal peptides with great mobility and protected from the solvent molecules. The angle between the amphipathic surface and the surface of dimerization is about 20 degrees. The results from the detailed structural comparison between Al-(L-Trp) insulin and Al-(D-Trp) insulin have provided a very good explanation to their great difference in biological activity, and confirmed our proposed binding interaction model of the insulin molecule with its receptor as well.  相似文献   

16.
The adsorption and assembly of B18 peptide on various solid surfaces were studied by reflectometry techniques and atomic force microscopy. B18 is the minimal membrane binding and fusogenic motif of the sea urchin protein bindin, which mediates the fertilization process. Silicon substrates were modified to obtain hydrophilic charged surfaces (oxide layer and polyelectrolyte multilayers) and hydrophobic surfaces (octadecyltrichlorosilane). B18 does not adsorb on hydrophilic positively charged surfaces, which was attributed to electrostatic repulsion since the peptide is positively charged. In contrast, the peptide irreversibly adsorbs on negatively charged hydrophilic as well as on hydrophobic surfaces. B18 showed higher affinity for hydrophobic surfaces than for hydrophilic negatively charged surfaces, which must be due to the presence of hydrophobic side chains at both ends of the molecule. Atomic force microscopy provided the indication that lateral diffusion on the surface affects the adsorption process of B18 on hydrophobic surfaces. The adsorption of the peptide on negatively charged surfaces was characterized by the formation of globular clusters.  相似文献   

17.
To meet the challenge of antibiotic resistance worldwide, a new generation of antimicrobials must be developed. (1) This communication demonstrates ab initio design of potent peptides against methicillin-resistant Staphylococcus aureus (MRSA). Our idea is that the peptide is very likely to be active when the most probable parameters are utilized in each step of the design. We derived the most probable parameters (e.g., amino acid composition, peptide hydrophobic content, and net charge) from the antimicrobial peptide database (2) by developing a database filtering technology (DFT). Different from classic cationic antimicrobial peptides usually with high cationicity, DFTamP1, the first anti-MRSA peptide designed using this technology, is a short peptide with high hydrophobicity but low cationicity. Such a molecular design made the peptide highly potent. Indeed, the peptide caused bacterial surface damage and killed community-associated MRSA USA300 in 60 min. Structural determination of DFTamP1 by NMR spectroscopy revealed a broad hydrophobic surface, providing a basis for its potency against MRSA known to deploy positively charged moieties on the surface as a mechanism for resistance. Our ab initio design combined with database screening (3) led to yet another peptide with enhanced potency. Because of the simple composition, short length, stability to proteases, and membrane targeting, the designed peptides are attractive leads for developing novel anti-MRSA therapeutics. Our database-derived design concept can be applied to the design of peptide mimicries to combat MRSA as well.  相似文献   

18.
The HIV-1 integrase (IN) catalyzes the integration of viral DNA in the human genome. In vitro the enzyme displays an equilibrium of monomers, dimers, tetramers and larger oligomers. However, its functional oligomeric form in vivo is not known. We report a study of the auto-associative properties of three peptides denoted K156, E156 and E159. These derive from the alpha4 helix of the IN catalytic core. The alpha4 helix is an amphipatic helix exposed at the surface of the protein and could be involved in the oligomerization process through its hydrophobic face. The peptides were obtained from the replacement of several amino acid residues by more helicogenic ones in the alpha4 helix peptide. K156 carries the basic residues Lys156 and Lys159, which have been shown important for the binding of IN to viral DNA. In E156 and E159 they are replaced with the acidic residue Glu. A fourth peptide K(E)156 obtained from the replacement of hydrophobic residues with Glu in K156 in order to abolish the auto-associative properties is used as a negative control. The capacity shown by peptides for alpha-helical formation is demonstrated by circular dichroism (CD) analysis performed in aqueous solution and in aqueous trifluoroethanol (TFE) mixtures. Both electrospray ionization mass spectrometry (ESI-MS) and glutaraldehyde chemical cross-linking show that peptides adopt different solvent-dependent equilibriums of monomers, dimers, trimers and tetramers. Oligomerization of peptides in aqueous solution is related to their ability to form helical structures. Addition of a small amount of TFE (<10%) stimulates helix stabilization and the interhelical hydrophobic contacts. Higher amounts of TFE alter the hydrophobic contacts and disrupt the oligomeric species. In addition to hydrophobic interactions, the patterns indicate that the biologically important Lys156 and Lys159 residues also participate in helix association. K(E)156 despite its ability to adopt a helical structure is unable to associate into oligomers, demonstrating the importance of hydrophobic contacts for oligomerization. Thus, the designed peptides provide us information on the functional properties of the alpha4 IN that seems to hold a dual role in DNA recognition and protein oligomerization.  相似文献   

19.
Detailed structural comparisons and investigation of DPI, 2Zn insulin and some other derivatives of insulin were performed by the least-squares superimposition technique and the graphics technique. It is pointed out in this paper that the binding interaction with the receptor molecule should take place mainly on an amphipathic surface of the insulin molecule. In the middle, there is a hydrophobic surface with an area of about 150 consisting of many hydrophobic residues; while the polar or charged groups distributing around the hydro. phobic surface construct a hydrophilic zone. The hydrophobic surface is usually covered by the extended B-chain C-terminal peptides with great mobility and protected from the solvent molecules. The angle between the amphipathic surface and the surface of dimerization is about 20 degrees. The results from the detailed structural comparison between A1-(L-Trp) insulin and A1-(D-Trp) insulin have provided a very good explanation to their great difference in biological activity,  相似文献   

20.
The present work extends the application of time-resolved fluorescence anisotropy (TRFA) of a cationic probe rhodamine 6G (R6G) in aqueous Ludox to in situ monitoring of peptide adsorption onto the silica particles. Steady-state anisotropy and TRFA of R6G in Ludox sols were measured to characterize the extent of the ionic binding of the probe to silica particles in the presence of varying levels of tripeptides of varying charge, including Lys-Trp-Lys (KWK), N-acetylated Lys-Trp-Lys (Ac-KWK), Glu-Trp-Glu (EWE), and N-acetylated Glu-Trp-Glu (Ac-EWE). The results were compared to those obtained by direct observation of peptide adsorption using the steady-state anisotropy of the intrinsic tryptophan residue. Ionic binding of the peptides to Ludox particles produced an increase in the steady-state Trp anisotropy that was dependent on the number of cationic groups present, but the limiting anisotropy values were relatively low, indicating significant rotational freedom of the indole residue in the adsorbed peptides. On the other hand, R6G showed significant decreases in anisotropy in the presence of cationic peptides, consistent with the cationic peptides blocking the adsorption of the dye to the silica surface. Thus, R6G is able to indirectly report on the binding of peptides to Ludox particles. It was noteworthy that, while there were similar trends in the data obtained from steady-state anisotropy and TRFA studies of R6G, the use of steady-state anisotropy to assess binding of peptides overestimated the degree of peptide adsorption relative to the value obtained by TRFA. The study shows that the competitive binding method can be used to assess the binding of various biologically relevant compounds onto silica surfaces and demonstrates the potential of TRFA for probing peptide-silica and protein-silica interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号