首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Kinetic studies for sorption of uranium, thorium and cobalt ions from hydrochloric acid solutions using tri-dodecyl amine (TDA) loaded on Amberlite XAD4 (polystyrene resin supplied by Rohm and Haas) using the batch technique, have been evaluated and assessed. Analysis of the respective data in accordance with three kinetic models revealed that the particle diffusion mechanism is the rate determining step, and the sorption for each metal ion on the impregnated sorbent follows the first order reversible kinetics. Values of the first order rate constants, rate constants of intraparticle transport, and the particle diffusion coefficients for the studied ions were determined. Sorption isotherms, which have been evaluated from the distribution coefficients for these ions, were found in good fit with the Langmuir and Freundlich isotherms.  相似文献   

2.
In this study, three different chitosan microsphere derivatives were prepared as sorbents for basic dyes. Preparation was succeeded by a novel cross-linking method based on ionic gelation with tripolyphosphate and subsequent covalent cross-linking with glutaraldheyde in order to address the large amount of swelling of the powdered form of the respective derivatives. Basic blue 3G (dye) was selected as the sorbate, and chitosan microsheres grafted with acrylamide and acrylic acid were used as biosorbents. Techniques such as FTIR spectroscopy, SEM, and swelling measurements facilitated the evaluation of the materials. Sorption-desorption experiments over the whole pH range were carried out to reveal the optimum value of sorption-desorption. The Langmuir isotherm model was used to fit the equilibrium experimental data, giving a maximum sorption capacity of 0.808 mmol/g at 338 K. An intraparticle diffusion model was employed to fit the kinetic data, and the resulting diffusion coefficients were in the range of (1-10) x 10(-11) m(2)/s. Thermodynamic analysis showed that the sorption process was spontaneous and endothermic with an increased randomness. In addition, sorption experiments were realized with a mixture of three basic dyes at various concentrations of sorbents.  相似文献   

3.
Summary Kinetics and equilibrium studies on the sorption of uranium and thorium ions were carried out from nitric acid solutions by tri-n-butyl phosphate (TBP) loaded supported sorbent, commercially known as Egy-Sorb, using batch technique. Analysis of the rate data in accordance with three kinetic models revealed that the particle diffusion process was the rate determining mechanism and the sorption process of the metal ions onto impregnated sorbent follows first order reversible kinetics. The values of the first order rate constants, the rate constants of intraparticle transport, and the particle diffusion coefficients for the uranium and thorium ions were determined from the graphical representation of the proposed models. Experimental isotherms of both ions were successfully fit to Langmuir and Freundlich isotherm models over the entire concentration range studied. The effect of temperature on the equilibrium distribution values has been utilized to evaluate the changes in standard thermodynamic quantities.  相似文献   

4.
The sorptive potential of some lignocellulosic agro-industrial wastes (sunflower seed shells and corn cob) for Basic Blue 9 cationic dye removal from aqueous solutions was examined using the batch technique. The Freundlich, Langmuir, and Dubinin-Radushkevich isotherm models were used in order to determine the quantitative parameters of sorption. The Langmuir isotherm model indicated a maximum sorption capacity for these materials in the range of 40–50 mg dye per g (25°C), slightly higher for corn cob than for sunflower seed shells. The values of the thermodynamic parameters showed that the retention of cationic dye is a spontaneous and endothermic process. The application of pseudo-first order and pseudo-second order intraparticle diffusion models, and a Boyd — Reichenberg model for kinetic data interpretation suggested that sorption of Basic Blue 9 dye onto the studied materials is a process where both surface sorption and intraparticle diffusion contributed to the rate-limiting step. These lignocellulosic wastes can be used with good efficiency for dye removal from aqueous effluents.   相似文献   

5.
Adsorption of acid dyes from aqueous solutions onto acid-activated bentonite   总被引:16,自引:0,他引:16  
The adsorption of two dyes, namely, Acid Red 57 (AR57) and Acid Blue 294 (AB294), onto acid-activated bentonite in aqueous solution was studied in a batch system with respect to contact time, pH, and temperature. Acidic pH was favorable for the adsorption of these dyes. The surface characterization of acid-activated bentonite was performed using the FTIR technique. The pseudo-first-order and pseudo-second-order kinetic models and the intraparticle diffusion model were used to describe the kinetic data and the rate constants were evaluated. The dynamic data fitted the pseudo-second-order kinetic model well and also followed the intraparticle diffusion model up to 90 min, but diffusion is not the only rate controlling step. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and the isotherm constants were determined. The Freundlich model agrees very well with experimental data. The activation energies of adsorption were also evaluated for the adsorption of AR57 and AB294 onto activated bentonite.  相似文献   

6.
Batch experiments were carried out for the sorption of methylene blue onto rice husk particles. The operating variables studied were initial solution pH, initial dye concentration, adsorbent concentration, and contact time. Equilibrium data were fitted to the Freundlich and Langmuir isotherm equations and the equilibrium data were found to be well represented by the Langmuir isotherm equation. The monolayer sorption capacity of rice husks for methylene blue sorption was found to be 40.5833 mg/g at room temperature (32 degrees C). The sorption was analyzed using pseudo-first-order and pseudo-second-order kinetic models and the sorption kinetics was found to follow a pseudo-second-order kinetic model. Also the applicability of pseudo second order in modeling the kinetic data was also discussed. The sorption process was found to be controlled by both surface and pore diffusion with surface diffusion at the earlier stages followed by pore diffusion at the later stages. The average external mass transfer coefficient and intraparticle diffusion coefficient was found to be 0.01133 min(-1) and 0.695358 mg/g min0.5. Analysis of sorption data using a Boyd plot confirms that external mass transfer is the rate limiting step in the sorption process. The effective diffusion coefficient, Di was calculated using the Boyd constant and was found to be 5.05 x 10(-04) cm2/s for an initial dye concentration of 50 mg/L. A single-stage batch-adsorber design of the adsorption of methylene blue onto rice husk has been studied based on the Langmuir isotherm equation.  相似文献   

7.
The kinetics of the sorption of aromatic amines such as o-aminophenol (o-AP), o-phenylenediamine (o-PDA), and p-phenylenediamine (p-PDA) onto Amberlite anion-exchange resin in chloride form was investigated in batch experiments spectrophotometrically at different temperatures. The sorption rate is zero order in all amines sorbed, increasing directly in the order: p-PDA相似文献   

8.
Adsorption kinetics is a key issue for successful sorbent selection and the proper design of batch and fixed-bed adsorption systems. The aim of the present study was to determine the kinetics, mass transfer and diffusion coefficients and to establish the rate-controlling mechanism/s during Direct Red 28 adsorption on Amosil and Avena sativa L. biomass. Five kinetic models (pseudo-second order, Blanchard, Avrami, Ritchie and power function) and and four mass transfer (external diffusion, film diffusion, particle diffusion, intraparticle diffusion) mathematical models were applied to the experimental data. To confirm the best-fitting model(s), error analyses were conducted. The integrative comparative analyses of the values of the predicted model parameters, coefficients and error functions established that the intraparticle diffusion model best represented the experimental results of the dye sorption on dried A. sativa L. biomass, while for the Direct Red 28/Amosil system, the kinetic behavior is the best described by either the pseudo-second or Blanchard’s model. Boyd’s effective intraparticle diffusion coefficient (D i ), characterizing the dye sorption on Amosil, is significantly lower than that for the system Direct Red 28/A. sativa L. biomass. The low values of the Bi number (Bi < 0.5) suggests that the mass transfer resistance, for both systems, is concentrated at the fluid/solid phase surface.  相似文献   

9.
A novel adsorbent, aminated and protonated mesoporous alumina, was prepared and employed for the removal of copper from aqueous solution at concentrations between 5 and 30 mg/l, in batch equilibrium experiments, in order to determine its adsorption properties. The removal of copper by the adsorbents increases with increasing adsorbent dosages. The adsorption mechanism is assumed to be an ion exchange between copper and the hydrogen ions present on the surface of the mesoporous alumina. The adsorbent was characterized by XRD, TEM, SEM, and BET methods. The sorption data have been analyzed and fitted to linearized adsorption isotherm of the Freundlich, Langmuir, and Redlich-Peterson models. The batch sorption kinetics have been tested for first-order, pseudo-first-order, and pseudo-second-order kinetic reaction models. The rate constants of adsorption for all these kinetic models have been calculated. Results also showed that the intraparticle diffusion of Cu(II) on the mesoporous catalyst was the main rate-limiting step.  相似文献   

10.
The kinetics and mechanism of adsorption of two commercial dyes (BR22, AB25), phenol, and 3-chlorophenol from water on activated carbons were studied at 30 degrees C. The activated carbons were prepared from plum kernels, and the activation temperature and time tested were in the ranges 750-900 degrees C and 1-4 h, respectively. Three simplified kinetic models including a pseudo-first-order, a pseudo-second-order, and an intraparticle diffusion model were tested. It was shown that the adsorption of both phenols could be fitted to a pseudo-second-order rate law, and that of both dyes could be fitted to an intraparticle diffusion model. Kinetic parameters were calculated and correlated with the physical properties of the adsorbents. Copyright 2000 Academic Press.  相似文献   

11.
The effect of Pb(II) and non-ionic surfactants (oxyethylate alcohols OS-10 and ALM-10) on the rate of intraparticle diffusion and on to the equilibrium sorption on Purolite C 106 cation exchanger in hydrogen form was investigated. The sorption of Pb(II) cations and in free state and bonded to the surfactant was measured. The coefficients of intraparticle diffusion were also calculated.  相似文献   

12.
Mahmut Özacar 《Adsorption》2003,9(2):125-132
The adsorption of phosphorus onto calcined alunite has been studied. Its equilibrium isotherm has been measured. The isotherm was determined by shaking 1.0 g calcined alunite, particle size range 90–150 m, with 100 mL phosphorus solution of initial concentrations from 0.5 to 2.5 mmol/L. The water bath shaking a constant rate of 200-rpm was used and the temperature maintained at 298 ± 2 K. A contact time of 120 min was required to achieve equilibrium. The experimental isotherm data were analyzed using the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich equations. The monolayer adsorption capacity is 1.355 mmol P per g calcined alunite. Three simplified kinetic models including a pseudo first-order equation, pseudo second-order equation and intraparticle diffusion equation were selected to follow the adsorption process. Kinetic parameters, rate constants, equilibrium sorption capacities and related correlation coefficients, for each kinetic model were calculated and discussed. It was shown that the adsorption of phosphorus could be described by the pseudo second-order equation.  相似文献   

13.
Phosphorus (P) has been recognized as one of the major limiting nutrients that are responsible for eutrophication of surface waters, worldwide. Efforts have been concentrated on reducing P loads reaching water bodies, via surface runoff and/or leaching through a soil profile. Use of drinking water treatment residuals (WTRs) is an emerging cost-effective practice to reduce soluble P in poorly P-sorbing soils or systems high in P. Literature suggests that WTRs have huge P sorption capacities. We hypothesized that P sorption would be limited by diffusional constraints imposed by the WTR particles. Selected chemical and physical (specific surface area, particle size distribution) characteristics of an iron-based WTR were measured. Sorption P isotherms at room temperature were constructed, and sorption kinetics were monitored. An intraparticle diffusion model was utilized to fit the kinetic data. Results showed that the WTR dramatically reduced soluble P, showing nonequilibrium characteristics, even after 80 d of reaction. Specific surface area (SSA) measured with CO2 gas was significantly greater than the traditional BET-N2 value (28 versus 3.5 m2 g(-1)), suggesting that a large amount of internal surfaces might be present in the WTR. The intraparticle P diffusion model was modified to include the wide particle size distribution of the WTR. The intraparticle diffusion model fitted the data well (r2 = 0.83). We calculated a maximum apparent P diffusion coefficient value of 4 x 10(-15) cm2 s(-1), which agrees with published values for intraparticle diffusion in microporous sorbents. This work may be useful for predicting long-term sorption characteristics of WTRs, since WTRs have been suggested as potential long-term immobilizers of sorbed P in P-sensitive ecosystems.  相似文献   

14.
In this paper, adsorption equilibrium and kinetics of three reactive dyes from their single-component aqueous solutions onto activated carbon were studied in a batch reactor. Effects of the initial concentration and adsorbent particle size on adsorption rate were investigated Adsorption equilibrium data were then correlated with several well-known equilibrium isotherm models. The kinetic data were fitted using the pseudo-first-order equation, the pseudo-second-order equation, and the intraparticle diffusion model. The respective characteristic rate constants were presented. A new adsorption rate model based on the pseudo-first-order equation has been proposed to describe the experimental data over the whole adsorption process. The results show that the modified pseudo-first-order kinetic model generates the best agreement with the experimental data for the three single-component adsorption systems.  相似文献   

15.
Kinetic modeling of the adsorption of basic dyes by kudzu   总被引:1,自引:0,他引:1  
The use of kudzu, a rapidly growing, high-climbing perennial leguminous vine, for the adsorption of basic dyes from aqueous solution has been investigated at various initial dye concentrations, masses of kudzu, and agitation rates. The extent and rate of adsorption of the three basic dyes (Basic Red 22, Basic Yellow 21, and Basic Blue 3) were analyzed using a pseudo-first-order and a pseudo-second-order kinetic model. While both rate mechanisms provided an acceptable degree of correlation with the experimental sorption rate data, the pseudo-second-order model gave a much higher degree of correlation, suggesting that this model could be used in design and simulation applications.  相似文献   

16.
The objective of this study was to investigate the adsorption of Basic Yellow 28 that is a cationic dye on clinoptilolite and amberlite XAD-4. Both equilibrium and batch rate adsorption in aqueous solutions of the dyestuff were investigated. Adsorption rate data were analysed using the pseudo-first order kinetic model of Lagergren and the pseudo-second order model to determine adsorption rate constants at 20, 30 and 40 degrees C. The adsorption equilibrium data were analysed using various adsorption isotherm models and the results have shown that adsorption behaviour of Basic Yellow 28 by clinoptilolite and amberlite could be described by either Langmuir or Freundlich models. Langmuir adsorption isotherm constants corresponding to adsorption capacity, Q(0), were found to be 59.6, 52.9 and 56.7 mg/g for clinoptilolite at 20, 30 and 40 degrees C, respectively. Lower adsorption capacities for Basic Yellow 28 on amberlite were obtained. The increase of adsorption rate constants with an increase in temperature for BY 28 adsorption on amberlite indicated chemisorption with dissociation and increased availability of sites due to higher penetration of adsorbing molecules into the pores.  相似文献   

17.
Mesoporous activated carbon has been prepared from coconut coir dust as support for adsorption of some model dye molecules from aqueous solutions. The methylene blue (MB) and remazol yellow (RY) molecules were chosen for study of the adsorption capacity of cationic and anionic dyes onto prepared activated carbon. The adsorption kinetics was studied with the Lagergren first- and pseudo-second-order kinetic models as well as the intraparticle diffusion model. The results for both dyes suggested a multimechanism sorption process. The adsorption mechanisms in the systems dyes/AC follow pseudo-second-order kinetics with a significant contribution of intraparticle diffusion. The samples simultaneously present acidic and basic sites able to act as anchoring sites for basic and acidic dyes, respectively. Calorimetric studies reveal that dyes/AC interaction forces are correlated with the pH of the solution, which can be related to the charge distribution on the AC surface. These AC samples also exhibited very short equilibrium times for the adsorption of both dyes, which is an economically favorable requisite for the activated carbon described in this work, in addition to the local abundance of the raw material.  相似文献   

18.
Batch sorption experiments were carried out to remove methylene blue from its aqueous solutions using fly ash as an adsorbent. Operating variables studied were initial dye concentration, fly ash mass, pH, and contact time. Maximum color removal was observed at a basic pH of 8. Equilibrium data were represented well by a Langmuir isotherm equation with a monolayer sorption capacity of 5.718 mg/g. Sorption data were fitted to both Lagergren first-order and pseudo-second-order kinetic models and the data were found to follow pseudo-second-order kinetics. Rate constants at different initial concentrations were estimated. The process mechanism was found to be complex, consisting of both surface adsorption and pore diffusion. The effective diffusion parameter D(i) values were estimated at different initial concentrations and the average value was determined to be 2.063 x 10(-9)cm2/s. Analysis of sorption data using a Boyd plot confirms the particle diffusion as the rate-limiting step for the dye concentration ranges studied in the present investigation (20 to 60 mg/L).  相似文献   

19.
Adsorption of Cu(II) from aqueous solution onto H(3)PO(4)-activated carbon using rubber wood sawdust (RSAC) was investigated in a batch system. Kinetic and isotherm studies were carried out by considering the effects of various parameters, such as initial concentration, contact time, pH, and temperature. The optimal pH value for Cu(II) adsorption onto RSAC was found to be 6.0. Thermodynamic parameters such as standard Gibbs free energy (DeltaG(0)), standard enthalpy (DeltaH(0)), and standard entropy (DeltaS(0)) were evaluated by applying the Van't Hoff equation. The thermodynamics of Cu(II) adsorption onto RSAC indicates its spontaneous and exothermic nature. Langmuir, Freundlich, and Temkin isotherms were used to analyze the equilibrium data at different temperatures. The Langmuir isotherm fits the experimental data significantly better than the other isotherms. Adsorption kinetics data were tested using pseudo-first-order, pseudo-second-order, and intraparticle diffusion models. Kinetic studies showed that the adsorption followed a pseudo-second-order reaction. The initial sorption rate, pseudo-first-order, pseudo-second-order, and intraparticle diffusion rate constants for different initial concentrations were evaluated and discussed. Adsorption mechanism studies revealed that the process was complex and followed both surface adsorption and particle diffusion. The rate-controlling parameter and effective diffusion coefficient were determined using the Reichenberg plot. It was found that the adsorption occurs through film diffusion at low concentrations and at higher concentration the particle diffusion becomes the rate-determining step.  相似文献   

20.
Hydroxyapatite is a member of apatite mineral family, with a high stability and flexibility of the apatitic structure, which allows the substitution of Ca2+ from its structure with other metals. This makes it an ideal material for the disposal of long-term contaminants because of its high sorption capacity for heavy metals. The synthesis parameters variation to obtain materials with specific physical–chemical properties in function of the application field is a necessary step in process optimization. The goal of this paper was to prepare hydroxyapatite-based materials with increased sorption capacity for cadmium retaining from aqueous solutions. The materials were characterized with X-ray diffractometer, transmission electron microscopy and the average particle size was also determined. The influence of synthesis method (co-precipitation and sol–gel), silica/silicon doping, granulometry, initial cadmium concentration and temperature was studied. pH and calcium ion concentration were monitored during sorption and compared to values obtained during dissolution. The kinetic data were fitted to pseudo-first order, pseudo-second order and intraparticle diffusion models. The sorption process follows pseudo-second-order kinetics with a contribution of intraparticle diffusion. The sol–gel prepared materials follow a different reaction mechanism than those prepared by co-precipitation method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号