The reliable measurement of mean flow properties near walls and interfaces between different fluids or fluid and gas phases is a very important task, as well as a challenging problem, in many fields of science and technology. Due to the decreasing concentration of tracer particles and the strong flow gradients, these velocity measurements are usually biased. To investigate the reason and the effect of the bias errors systematically, a detailed theoretical analysis was performed using window-correlation, singe-pixel ensemble-correlation and particle tracking evaluation methods. The different findings were validated experimentally for microscopic, long-range microscopic and large field imaging conditions. It is shown that for constant flow gradients and homogeneous particle image density, the bias errors are usually averaged out. This legitimates the use of these techniques far away from walls or interfaces. However, for inhomogeneous seeding and/or nonconstant flow gradients, only PTV image analysis techniques give reliable results. This implies that for wall distances below half an interrogation window dimension, the singe-pixel ensemble-correlation or PTV evaluation should always be applied. For distances smaller than the particle image diameter, only PTV yields reliable results. 相似文献
Wind-blown sand is a typical example of two-phase particle-laden flows. Owing to lack of simultaneous measured data of the
wind and wind-blown sand, interactions between them have not yet been fully understood. In this study, natural sand of 100–125 μm
taken from Taklimakan Desert was tested at the freestream wind speed of 8.3 m/s in an atmospheric boundary layer wind tunnel.
The captured flow images containing both saltating sand and small wind tracer particles, were separated by using a digital
phase mask technique. The 2-D PIV (particle imaging velocimetry) and PTV (particle tracking velocimetry) techniques were employed
to extract simultaneously the wind velocity field and the velocity field of dispersed sand particles, respectively. Comparison
of the mean streamwise wind velocity profile and the turbulence statistics with and without sand transportation reveal a significant
influence of sand movement on the wind field, especially in the dense saltating sand layer (y/δ < 0.1). The ensemble-averaged streamwise velocity profile of sand particles was also evaluated to investigate the velocity
lag between the sand and the wind. This study would be helpful in improving the understanding of interactions between the
wind and the wind-blown sand. 相似文献
The combination of ultrasound echo images with digital particle image velocimetry (DPIV) methods has resulted in a two-dimensional, two-component velocity field measurement technique appropriate for opaque flow conditions including blood flow in clinical applications. Advanced PIV processing algorithms including an iterative scheme and window offsetting were used to increase the spatial resolution of the velocity measurement to a maximum of 1.8 mm×3.1 mm. Velocity validation tests in fully developed laminar pipe flow showed good agreement with both optical PIV measurements and the expected parabolic profile. A dynamic range of 1 to 60 cm/s has been obtained to date. 相似文献
In this paper, we investigate the performance of particle tracking, exploring the influence of an increasing amount of estimators.
Basically, a simple method to determine particle matchings was used. Then, first, temporal extrapolation as well as spatial
interpolation are employed. Second, a PIV processing step was incorporated. Tests from simulations show that at relatively
high seeding densities the performance was increased by a factor of 4 and 13 for the first and second step, respectively.
In a physical experiment of a wake behind a heated cylinder, a clear performance improvement in the case of PIV preprocessing
was observed.
Received: 4 April 2001 / Accepted: 9 August 2001 相似文献
A new approach for the interpolation of a filtered turbulence velocity field given random point samples of unfiltered turbulence velocity data is described. In this optimal interpolation method, the best possible value of the interpolated filtered field is obtained as a stochastic estimate of a conditional average, which minimizes the mean square error between the interpolated filtered velocity field and the true filtered velocity field. Besides its origins in approximation theory, the optimal interpolation method also has other advantages over more commonly used ad hoc interpolation methods (like the adaptive Gaussian window). The optimal estimate of the filtered velocity field can be guaranteed to preserve the solenoidal nature of the filtered velocity field and also the underlying correlation structure of both the filtered and the unfiltered velocity fields. The a posteriori performance of the optimal interpolation method is evaluated using data obtained from high-resolution direct numerical simulation of isotropic turbulence. Our results show that for a given sample data density, there exists an optimal choice of the characteristic width of cut-off filter that gives the least possible relative mean square error between the true filtered velocity and the interpolated filtered velocity. The width of this optimal filter and the corresponding minimum relative error appear to decrease with increase in sample data density. Errors due to the optimal interpolation method are observed to be quite low for appropriate choices of the data density and the characteristic width of the filter. The optimal interpolation method is also seen to outperform the adaptive Gaussian window, in representing the interpolated field given the data at random sample locations. The overall a posteriori performance of the optimal interpolation method was found to be quite good and hence makes a potential candidate for use in interpolation of PTV and super-resolution PIV data. 相似文献
Particle image velocimetry (PIV) has been significantly advanced since its conception in early 1990s. With the advancement of imaging modalities, applications of 2D PIV have far expanded into biology and medicine. One example is echocardiographic particle image velocimetry that is used for in vivo mapping of the flow inside the heart chambers with opaque boundaries. Velocimetry methods can help better understanding the biomechanical problems. The current trend is to develop three-dimensional velocimetry techniques that take advantage of modern medical imaging tools. This study provides a novel framework for validation of velocimetry methods that are inherently three dimensional such as but not limited to those acquired by 3D echocardiography machines. This framework creates 3D synthetic fields based on a known 3D velocity field \({\mathbf{V}}\) and a given 3D brightness field \({\mathbf{B}}\). The method begins with computing the inverse flow \({\mathbf{V}}^{\varvec{*}} \) based on the velocity field \({\mathbf{V}}\). Then the transformation of \({\mathbf{B}}\), imposed by \({\mathbf{V}}\), is calculated using the computed inverse flow according to \({\mathbf{B}}^{\varvec{*}} \left( {\mathbf{x}} \right) = {\mathbf{B}}\left( {{\mathbf{x}} + {\mathbf{V}}^{\varvec{*}} \left( {\mathbf{x}} \right)} \right)\), where x is the coordinates of voxels in \({\mathbf{B}}^{\varvec{*}} \), with a 3D weighted average interpolation, which provides high accuracy, low memory requirement, and low computational time. To check the validity of the framework, we generate pairs of 3D brightness fields by employing Hill’s spherical vortex velocity field. \({\mathbf{B}}\) and the generated \({\mathbf{B}}^{\varvec{*}} \) are then processed by our in-house 3D particle image velocimetry software to obtain the interrelated velocity field. The results indicates that the computed and imposed velocity fields are in agreement. 相似文献
A new stereoscopic PIV system to measure the three velocity components is developed and applied to grid turbulence flows.
This system uses two CCD cameras coupled with an accurate cross-correlation calculation method. An experimental test (based
upon three-dimensional displacements) has been carried out to demonstrate the capability of this process to locate the maximum
of correlation, and to detect accurately the 3D displacements. Experiments in a well-established turbulent flow have validated
the method for quantitative measurements and a comparison with LDV results showed a good agreement in terms of mean and fluctuating velocities. Combined PIV and stereoscopic PIV measurements on a turbulent flow revealed the need to the stereoscopic systems to measure accurate 2D
velocity fields. It has been shown that an error of up to 10% in the velocity fluctuation measured by conventional PIV could
be attained due to 3D effects in highly turbulent cases. Finally, the digital cross-correlation technique adapted to the determination
of small displacements seems to be the most suitable technique for stereoscopic PIV.
Received: 22 July 1997/Accepted: 27 January 1998 相似文献
An experimental investigation of a high Reynolds number flow (Re = 320 000) of a dilute liquid-solid mixture (<1% by volume) was conducted. The turbulent motion of both the liquid phase (water) and particles (0.5, 1, and 2 mm glass beads) was evaluated in an upward pipe flow using a particle image/tracking velocimetry (PIV/PTV) technique. Results show that the Eulerian mean axial velocity of the glass beads is lower than that of the liquid phase in the central region but higher in the near-wall region. Moreover, the presence of the coarse particles has a negligible effect on the turbulence intensity of the liquid phase. Particles show higher streamwise and radial fluctuations than the liquid-phase at the tested conditions. The profiles of particle concentration across the pipe radius show almost constant concentration in the core of the pipe with a decrease towards the near wall region for 0.5 and 1 mm particles. For the 2 mm particles, a nearly linear concentration gradient from centre to the pipe wall is observed. The results presented here provide new information concerning the effect of a dispersed particulate phase on the turbulence modulation of the liquid carrier phase, especially at high Reynolds numbers. The present study also demonstrates how correlations developed to determine if particles cause turbulence attenuation/augmentation are not applicable for solid-liquid flows at high Reynolds numbers. Finally, the importance of particle-fluid slip velocity on fluid phase turbulence modulation is illustrated. 相似文献
We present an experimental benchmark database for the transitional cavity flow. The database is obtained by planar Particle Image Velocimetry measurements at the median plane of the cavity model, for Reynolds numbers between 6300 and 19,000 based on the cavity height. A detailed uncertainty analysis of the experimental results is performed via the correlation statistics method for PIV uncertainty quantification and linear error propagation.The experimental results are compared to two-dimensional Reynolds-Averaged Navier Stokes (RANS) numerical simulations with different turbulence models. It is shown that, when the standard k-ω turbulence model is employed, the discrepancy between numerical simulations and experimental results exceeds the uncertainty of the latter. Conversely, RANS simulations with the SST k-ω turbulence model agree well with the experimental data in terms of time-averaged flow properties; however, the turbulent kinetic energy results present significant discrepancies at all considered Reynolds numbers. The data presented in this paper is made available for open-access download via the 4TU.ResearchData repository with DOI: https://doi.org/10.4121/14061233. 相似文献
The design of machinery for handling granular materials relies mainly on empirical methods and in-house engineering knowledge. This traditional approach provides incremental improvements that are often limited. Advancements in simulation and optimization can offer a promising alternative approach. Most of the research involved in improving or optimizing equipment design does not include the realistic performance of the new prototype and as such it is uncertain that the predicted performance is also guaranteed in practice.In this study, a design framework for a new generation of machinery handling granular materials, grabs, has been established that includes a full-scale validation step. This has been proven to lead to a breakthrough in equipment design. This design framework uses a co-simulation between Discrete Element Method (DEM) and Multi Body Dynamics (MBD), thus, capturing operational conditions in full-scale. The DEM simulation supported design step integrated as the main step to generate new prototypes. The performance of the prototype is evaluated by conducting full-scale experiments, thus validating the adequacy of the new design as well as the accuracy of the co-simulation. Through this a full design cycle has been fulfilled and a validated model has been achieved that is independent of specific design configurations. 相似文献
A hybrid technique is presented that combines scanning PIV with tomographic reconstruction to make spatially and temporally resolved measurements of the fine-scale motions in turbulent flows. The technique uses one or two high-speed cameras to record particle images as a laser sheet is rapidly traversed across a measurement volume. This is combined with a fast method for tomographic reconstruction of the particle field for use in conjunction with PIV cross-correlation. The method was tested numerically using DNS data and with experiments in a large mixing tank that produces axisymmetric homogeneous turbulence at \(R_\lambda \simeq 219\). A parametric investigation identifies the important parameters for a scanning PIV set-up and provides guidance to the interested experimentalist in achieving the best accuracy. Optimal sheet spacings and thicknesses are reported, and it was found that accurate results could be obtained at quite low scanning speeds. The two-camera method is the most robust to noise, permitting accurate measurements of the velocity gradients and direct determination of the dissipation rate. 相似文献
An improvement of the process of stereo-PIV calibration is presented. The central feature of the proposed technique is that the calibration of the stereoscopic system is based upon the measurement of a calibrated flow. This is achieved through an initial two-dimensional calibration of the measurement plane using a single target point, followed by a perspective and laser sheet thickness optimization that makes use of the measurement of a known reference flow, e.g., a uniform flow. This technique results in planar domain, three-component (2D–3C) measurements with a simpler calibration phase, which delivers uncompromised accuracy, compensates for the mechanical misalignment and eliminates the errors deriving from the classical target plate dot identification. The technique is particularly well suited for towing tanks and other large facilities, and is applied to the vortex system shed from an underwater bridge sail. 相似文献
Particle image velocimetry (PIV) has been adapted for use in measuring particle displacement and velocity fields in granular
flows. “Seeding” is achieved by using light and dark particles. The granular flow adjacent to a clear bounding wall is illuminated
with a strobe, and the recorded images are analyzed using standard PIV techniques. The application is demonstrated by measuring
convection rolls in a granular bed undergoing vertical oscillations. The PIV measured displacement is consistent with displacement
of a marked layer of particles.
Received: 29 January 1998/Accepted: 8 April 1999 相似文献
In this study, an analytical procedure for the bending problem of a viscoelastic sandwich plate with a corrugated core is presented. Reissner–Mindlin plate theory and N-termed Prony series are employed to define the elastic and time-dependent contributions of the governing equations, respectively. Three different corrugation patterns, i.e., rectangular, trapezoidal, and triangular, are examined. Moreover, the structure is analyzed under both simply support and clamp boundary conditions. The calibrated material parameters of polymethyl methacrylate (PMMA) for the Generalized Maxwell rheological model are employed to show the viscoelastic response of the structure. A 3D finite element simulation of the problem is also conducted to confirm the accuracy of the analytical formulation. The two well-known creep and stress relaxation phenomena of the viscoelastic materials are examined for the mentioned corrugation cores and both boundary conditions analytically and numerically. The time-dependent dimensionless deflection and resultant von Mises stress distributions are provided. Besides, the variation of the results with various rise-times and applied load are studied in detail. The von Mises stress contours of the upper surface of the structure at the end of the creep test are also presented. The finite element method outcomes verify the analytical results with excellent compatibility. The proposed analytical procedure can be used as an efficient tool to study the effects of various parameters such as material, geometrical constants, and corrugation pattern on bending of viscoelastic sandwich plates with corrugated core problems for design and optimization, which involves a high number of simulations.
A combination of the correlation-based interrogation algorithm and the correlation-based tracking algorithm is proposed for digital PIV evaluation. A zero-padding interrogation algorithm is adopted in which the interrogation windows differ in size and in which the number of pixels in the side length of the smaller window is not restricted to a power of 2. This greatly improves the algorithm's accuracy and measurement range. The correlation-based tracking algorithm is employed when the already-measured vector can serve as a good predictor of the next vector to be measured. In this case, only a very small searching scope is required and computation can be fast. Computational intensity analysis shows that, using the same-sized sampled window, the correlation-based tracking algorithm is more efficient than the conventional correlation-based interrogation algorithm if the searching scope is less than 4. Compared with some of the other correlation-based algorithms, the proposed combination method is faster, is more accurate, has a larger measurable range, and can utilize a sampled window of any size. 相似文献
Echo particle image velocimetry (Echo PIV) presents itself as an attractive in vivo flow quantification technique to traditional approaches. Promising results have been acquired; however, limited quantification and validation is available for post-stenotic flows. We focus here on the comprehensive evaluation of in vitro downstream stenotic flow quantified by Echo PIV and validated in relation to digital particle image velocimetry (DPIV). A Newtonian blood analog was circulated through a closed flow loop and quantified immediately downstream of a 50 % axisymmetric blockage at two Reynolds numbers (Re) using time-averaged Echo PIV and DPIV. Centerline velocities were in good agreement at all Re; however, Echo PIV measurements presented with elevated standard deviation (SD) at all measurements points. SD was improved using increased line density (LD); however, frame rate or field of view (FOV) is compromised. Radial velocity profiles showed close agreement with DPIV with the largest disparity in the shear layer and near-wall recirculation. Downstream recirculation zones were resolved by Echo PIV at both Re; however, magnitude and spatial coverage was reduced compared to DPIV that coincided with reduced contrast agent penetration beyond the shear layer. Our findings support the use of increased LD at a cost to FOV and highlight reduced microbubble penetration beyond the shear layer. High local SD at near-wall measurements suggests that further refinement is required before proceeding to in vivo quantification studies of wall shear stress in complex flow environments. 相似文献