首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Liquid crystals》1999,26(7):1067-1078
The phase behaviour of the discotic mesogen 5,10,15,20-tetrakis(4-n -dodecylphenyl)porphyrin (C12TPP) was investigated under hydrostatic pressures up to 300MPa by high pressure DTA and wide angle X-ray diffraction methods. The typical enantiotropic phase transitions of C12TPP, low- to high-temperature crystal (Cr2-Cr1), Cr1-discotic lamellar phase (DL), and DL-isotropic liquid (I) are observed at pressures up to 10MPa. Application of hydrostatic pressure to the sample generates a pressure-induced crystal polymorph (Cr3) between the Cr2 and Cr1 phases, and the phase transitions Cr2-Cr3-Cr1-DL-I occur reversibly in the pressure region between 10 and 180MPa. On heating at higher pressures above 180MPa, the fourth crystal polymorph (Cr4) is formed between the Cr2 and Cr3 phases at lower temperatures, and at the same time the fifth crystal polymorph (Cr5) appears abruptly between the Cr1 and DL phases at high temperatures. The Cr2-Cr4-Cr3-C1-(Cr5)-DL-I transition processes were observed at 180 200MPa. Further increasing the pressure above 270MPa induces entirely different thermal behaviour: only two peaks for the pressure-induced transition between the sixth and fifth polymorphs (Cr6-Cr5) and the Cr5-I transitions are detected at low and high temperatures on heating, while both the DTA and WAXD experiments on cooling show the formation of the DL phase as a monotropic phase between the I and Cr5 phases, indicating the I DL Cr5 Cr6 process. The thermal behaviour was ambiguous and complex in the pressure region between 200 and 260MPa because the peaks for the intermediate crystal transitions were too small to detect with confidence. The two different sequences of the Cr2-Cr4-Cr3-Cr1-DL-I and Cr6-Cr5-(DL)-I processes seems to occur competitively. The T vs. P phase diagram of a sample cooled at 300MPa was studied to determine the triple point of the DL phase and to investigate the phase stability of the pressure-induced crystal polymorphs. The Cr6-Cr5-I transition process was observed on heating at 200 and 300MPa, while the Cr6-Cr5-DL-I process was detected at lower pressures below 100MPa. Since the Cr5-DL transition temperature changes linearly with a slope dT/dP 40 degrees C/100 MPa, while the DL-I transition temperature changes slightly (dT/dP 5.5 degrees C/100MPa), the DL phase forms a triangle in the T vs. P diagram. The triple point of the DL phase was found to be 240.8MPa and 168.8 C. The Cr6 polymorph reorganized to the stable Cr2 form under atmospheric pressure on annealing at room temperature overnight.  相似文献   

2.
The phase behaviour of the discotic mesogen 2,3,6,7,10,11-hexahexylthiotriphenylene (HHTT) was investigated under hydrostatic pressures up to 500 MPa using high pressure optical and DTA measurements. The known enantiotropic phase transitions of HHTT, i.e. crystal (Cr)-helical phase (H), H-hexagonal columnar phase (Colh) and Colh-isotropic liquid (I) were observed up to 32 MPa. Application of hydrostatic pressures above 32 MPa results in the H and Colh phases becoming monotropic, depending upon the applied pressure. The H phase was observed as a monotropic phase in the pressure region between 32 and about 180 MPa. Thus, the I →Colh →H →Cr transition sequence appeared only on cooling under these pressures, while the Cr →Colh →I transition occurred on heating. Further increases in pressure above a second limiting value leads to the Colh phase becoming monotropic. Thus the I →Colh →Cr transition sequence appeared on cooling, while the Cr →I transition was observed on heating. The T vs. P phase diagram based on the data obtained in the heating mode contains two triple points; one is estimated as 40 MPa, 77.2°C for the Cr-H-Colh triple point and the other is extrapolated as 285 MPa, 118.3°C for the Cr-Colh-I triple point. These triple points define the upper limits for the appearance of the stable H and Colh phases, respectively.  相似文献   

3.
The phase transition behaviour of an optically isotropic, thermotropic cubic mesogen 1,2-bis-(4- n -octyloxybenzoyl)hydrazine, BABH(8), was investigated under pressures up to 200 MPa using a high pressure differential thermal analyser, wide-angle X-ray diffraction and a polarizing optical microscope equipped with a high pressure optical cell. The phase transition sequence, low temperature crystal (Cr 2 )-high temperature crystal (Cr 1 ) - cubic (Cub)-smectic C (SmC)-isotropic liquid (I) observed at atmospheric pressure, is seen in the low pressure region below about 30 MPa. The cubic phase disappears at high pressures above 30-40 MPa, in conjunction with the disappearance of the Cr 1 phase. The transition sequence changes to Cr 2 -SmC-I in the high pressure region. Since only the Cub-SmC transition line among all the phase boundaries has a negative slope (d T /d P ) in the temperature-pressure phase diagram, the temperature range for the cubic phase decreases rapidly with increasing pressure. As a result, a triple point was estimated approximately as 31.6 ±2.0 MPa, 147.0 ±1.0°C for the SmC, Cub and Cr 1 phases, indicating the upper limit of pressure for the observation of the cubic phase. Reversible changes in structure and optical texture between the Cub and SmC phases were observed from a spot-like X-ray pattern and dark field for the cubic phase to the Debye-Sherrer pattern and sand-like texture for the SmC phase both in isobaric and isothermal experiments.  相似文献   

4.
The phase behaviour of two achiral bent core banana-shaped compounds, the hexyloxy (compound I) and decyloxy (compound II) members of the 1,3-phenylene bis[N-(2-hydroxy-4-n-alkoxybenzylidene)-4'-aminobenzoate] series was investigated under hydrostatic pressures up to 300 MPa using high pressure differential thermal analysis and light transmission methods. The reversible transition sequence crystal (Cr1)-B1 phase-isotropic liquid (I), observed at room pressure for compound I, remains in the pressure region up to c 70 MPa. At higher pressures a pressure-induced crystalline phase (Cri) appears between the Cr1 and B1 phases, its temperature region becoming wider with increasing pressure. The temperature vs. pressure phase diagram shows a triple point of 72.9 MPa and 160.3°C for the Cr1, Cri and B1 phases, indicating the lower limit of pressure for the Cri phase. In compound II the reversible transition sequence crystal (Cr1)-B2 phase-I is seen over the whole pressure region, and the temperature range of the B2 phase remains unaltered. It is concluded that both the B1 and B2 banana phases are stable over the whole pressure region studied.  相似文献   

5.
The phase transition behaviour of three homologous discotic mesogens, the hexa-n-alkoxyanthraquinones HOAQ(n), n indicating the number of carbon atoms in the alkoxy group, was investigated under hydrostatic pressures up to 500 MPa using a high pressure differential thermal analyser. The T vs. P phase diagrams of HOAQ(6), HOAQ(8) and HOAQ(9) were constructed for solution- (Cr0) and melt-crystallized (Cr1) samples of the compounds. HOAQ(6) shows the reversible Cr0-rectangular columnar phase (Colr)-hexagonal columnar phase (Colh)-isotropic liquid (I) phase sequence at atmospheric pressure. The stable Colr phase of HOAQ(6) has a decreased temperature range with increasing pressure and then the Colr phase disappears under pressures above about 350 MPa; instead the Cr0-Colh-I phase sequence is exhibited. For HOAQ(8), the solution-grown sample exhibits the stable Cr0-Colh-I phase sequence at atmospheric pressure. Applying pressure to the solution-grown sample induces the formation of the stable Colr phase in the pressure region between 10 and 350 MPa, leading to the Cr0-Colr-Colh-I phase sequence. The pressure-induced Colr phase disappears under higher pressures. The melt-cooled sample of HOAQ(8) shows the formation of the metastable crystal (Cr1), unknown mesophase (X) and Colr phases at lower temperatures under atmospheric pressure, and exhibits the reversible Cr1-X-Colr-Colh-I phase sequence on subsequent thermal cycles. The metastable phase sequence was observed under pressures up to 100 MPa, but the phase transitions were too small to be detected under higher pressures. In HOAQ(9) the stable Cr0-Colh-I phase sequence is observed at all pressures, while the melt-cooled sample shows the metastable Cr1-Colr-Colh-I phase sequence under pressures up to 300 MPa. The metastable Colr phase disappears under higher pressures.  相似文献   

6.
《Liquid crystals》1998,25(4):537-542
The crystal and mesophase transitions of the discotic material 5,10,15,20-tetrakis(4- n-dodecylphenyl)porphyrin have been studied by high pressure DTA and wide angle X-ray diffraction. At lower pressures, the discotic lamellar (DL) phase is enantiotropic, but at higher pressures above a critical point determined as 240MPa and 170 C the DL phase is monotropic.  相似文献   

7.
Two polycatenar materials composed of a four-aromatic-ring core with a perfluorinated moiety attached in one terminal position through either butylene- or pentylene spacer groups, and three tetradecyloxy chains at the other end (abbreviated as 14PC4F and 14PC5F), were investigated to study the effect of pressure on the phase transition behaviour. A polarizing optical microscope equipped with a high pressure optical hot stage, was used for the purpose. The T vs. P phase diagrams of 14PC4F and 14PC5F were constructed in the pressure region up to 100 MPa. 14PC4F showed the stable crystal (Cr1)-columnar tetragonal (Coltet)-smectic A (SmA)-columnar hexagonal (Colh)-isoropic liquid (I) phase transition sequence under all pressures. 14PC5F exhibited the phase sequence metastable crystal (Cr2)-cubic (Cub)-Coltet-SmA-I in a melt-cooled sample on heating under pressure. But when the melt-cooled Cr2 sample was annealed at 52-54°C for 2-3 h, the stable crystal (Cr1) was formed slowly, giving a stable Cr1-Cub-Coltet-SmA-I phase sequence. The temperature region of the stable cubic phase broadened with increasing pressure. Furthermore a new mesophase of 14PC5F was pressure-induced between the I and SmA phases on cooling at pressures above about 16 MPa. Since the monotropic mesophase exhibited a texture very similar to that of the high temperature Colh phase of 14PC4F with planar orientation, the new phase was assigned at a high temperature columnar hexagonal phase of 14PC5F.  相似文献   

8.
The phase transition behaviour of an optically isotropic, thermotropic cubic mesogen 1,2-bis-(4-n-octyloxybenzoyl)hydrazine, BABH(8), was investigated under pressures up to 200 MPa using a high pressure differential thermal analyser, wide-angle X-ray diffraction and a polarizing optical microscope equipped with a high pressure optical cell. The phase transition sequence, low temperature crystal (Cr2)-high temperature crystal (Cr 1)- cubic (Cub)-smectic C (SmC)-isotropic liquid (I) observed at atmospheric pressure, is seen in the low pressure region below about 30 MPa. The cubic phase disappears at high pressures above 30–40 MPa, in conjunction with the disappearance of the Cr1 phase. The transition sequence changes to Cr2-SmC-I in the high pressure region. Since only the Cub-SmC transition line among all the phase boundaries has a negative slope (dT/dP) in the temperature-pressure phase diagram, the temperature range for the cubic phase decreases rapidly with increasing pressure. As a result, a triple point was estimated approximately as 31.6 ±2.0 MPa, 147.0±1.0°C for the SmC, Cub and Cr1 phases, indicating the upper limit of pressure for the observation of the cubic phase. Reversible changes in structure and optical texture between the Cub and SmC phases were observed from a spot-like X-ray pattern and dark field for the cubic phase to the Debye-Sherrer pattern and sand-like texture for the SmC phase both in isobaric and isothermal experiments.  相似文献   

9.
The phase behaviour of two achiral bent core banana-shaped compounds, the hexyloxy (compound I) and decyloxy (compound II) members of the 1,3-phenylene bis[N-(2-hydroxy-4-n-alkoxybenzylidene)-4′-aminobenzoate] series was investigated under hydrostatic pressures up to 300?MPa using high pressure differential thermal analysis and light transmission methods. The reversible transition sequence crystal (Cr1)–B1 phase–isotropic liquid (I), observed at room pressure for compound I, remains in the pressure region up to c 70?MPa. At higher pressures a pressure-induced crystalline phase (Cri) appears between the Cr1 and B1 phases, its temperature region becoming wider with increasing pressure. The temperature vs. pressure phase diagram shows a triple point of 72.9?MPa and 160.3°C for the Cr1, Cri and B1 phases, indicating the lower limit of pressure for the Cri phase. In compound II the reversible transition sequence crystal (Cr1)–B2 phase–I is seen over the whole pressure region, and the temperature range of the B2 phase remains unaltered. It is concluded that both the B1 and B2 banana phases are stable over the whole pressure region studied.  相似文献   

10.
《Liquid crystals》2001,28(12):1785-1791
The phase behaviour of 4'-n-hexadecyloxy-3'-nitrobiphenyl-4-carboxylic acid (ANBC-16) was investigated under hydrostatic pressures up to 200 MPa using high pressure differential thermal analysis. The phase transition sequence crystal 4 (Cr4)-crystal 3 (Cr3)-crystal 2 (Cr2)-crystal 1 (Cr1)-smectic C (SmC)-Cubic (Cub)-smectic A (SmA)-'structured liquid' (I1)-isotropic liquid (I2) was observed for a virgin sample on heating at atmospheric pressure. The stable temperature region of the optically isotropic cubic phase becomes narrower on increasing pressure and disappears at pressures above 65 MPa. The T vs. P phase diagram exhibits the existence of a triple point (65 MPa, 207.6°C) for the cubic phase, a new mesophase (X), and the SmA phase, indicating the upper limit for the cubic phase. The new mesophase, denoted here as X, appears in place of the cubic phase at pressures above 65 MPa. The phase diagram also indicates that the Cr4-Cr3, Cr3-Cr2, and Cr2-Cr1 transition lines merge at about 40-50 MPa and then only the Cr4-Cr1 transition is observed in the solid state at higher pressures. Thus the phase transition process on heating changes from the sequence Cr4-Cr3-Cr2-Cr1-SmC-Cub-SmA-I1-I2 at atmospheric pressure to Cr4-Cr1-SmC-X-SmA-I1-I2 in the high pressure region above 65 MPa, via Cr4-Cr3-Cr2-Cr1-SmC-(X)-Cub-SmA-I1-I2 in the low pressure region.  相似文献   

11.
The phase transition behaviour of an optically isotropic, thermotropic cubic mesogen 1,2-bis(4-n-decyloxybenzoyl)hydrazine, BABH(10), was investigated under pressures up to 300 MPa using a high pressure differential thermal analyser, a wide angle X-ray diffractometer and a polarizing optical microscope (POM) equipped with a high pressure optical cell. The reversible change in structure and optical texture between the cubic (Cub) and smectic C (SmC) phases was associated with a change from a spot-like X-ray pattern and dark field for the Cub phase to the Debye-Sherrer ring pattern and sand-like texture for the SmC phase under both isobaric and isothermal conditions. The Cub phase was found to disappear at pressures above about 11 MPa. The phase transition sequence, low temperature crystal (Cr3)-intermediate temperature crystal (Cr2)-high temperature crystal (Cr1)-Cub-SmC-isotropic liquid (I) observed at atmospheric pressure, is maintained in the low pressure region below 10 MPa. The transition sequence changes to Cr3-Cr2-(Cr1)-SmC-I in the high pressure region. Since the Cub-SmC transition line determined by POM has a negative slope (dT/dP) in the T-P phase diagram, a triple point is estimated approximately at 10-11 MPa, and 143-145°C for the SmC, Cub and Cr1 phases, giving the upper limit of pressure for the observation of the cubic phase.  相似文献   

12.
In situ observation of the optical texture, and X-ray patterns of the pressure-induced mesophase seen for 4′-n-hexadecyloxy-3′-nitrobiphenyl-4-carboxylic acid (ANBC-16) was performed under hydrostatic pressures up to 100MPa using a polarizing optical microscope equipped with a high pressure hot stage and a wide angle X-ray diffractometer equipped with a high pressure vessel respectively. It was found that the pressure-induced mesophase (hereafter refered to as ‘X’) appeared at pressures above 60 MPa, and exhibits a birefringent broken-fan or a sand-like texture that remain unaltered in the SmC phase. The POM-transmitted light intensity curve measured on heating clearly showed the Cr4 → Cr1 → SmC → ‘X’ → SmA → I transition sequence at 80 MPa. The optical texture and the POM-transmitted light intensity measured during a pressure cycle at 185°C showed a reversible change between the cubic and ‘X’ phases. The WAXD pattern of the ‘X’ phase showed a spot-like pattern, suggesting no layered structure for this phase, and also revealed a substantial decrease in the d-spacing of the low angle reflection at 80 and 100 MPa, compared with the d-spacings of the (0 0 1) reflection of the SmC phase and also the (2 1 1) reflection of the cubic phase. It is concluded from these data that the ‘X’ phase is a birefringent hexagonal columnar phase.  相似文献   

13.
In situ observation of the optical texture, and X-ray patterns of the pressure-induced mesophase seen for 4'-n-hexadecyloxy-3'-nitrobiphenyl-4-carboxylic acid (ANBC-16) was performed under hydrostatic pressures up to 100MPa using a polarizing optical microscope equipped with a high pressure hot stage and a wide angle X-ray diffractometer equipped with a high pressure vessel respectively. It was found that the pressure-induced mesophase (hereafter refered to as 'X') appeared at pressures above 60 MPa, and exhibits a birefringent broken-fan or a sand-like texture that remain unaltered in the SmC phase. The POM-transmitted light intensity curve measured on heating clearly showed the Cr4 →Cr1 →SmC →'X' →SmA →I transition sequence at 80 MPa. The optical texture and the POM-transmitted light intensity measured during a pressure cycle at 185°C showed a reversible change between the cubic and 'X' phases. The WAXD pattern of the 'X' phase showed a spot-like pattern, suggesting no layered structure for this phase, and also revealed a substantial decrease in the d-spacing of the low angle reflection at 80 and 100 MPa, compared with the d-spacings of the (0 0 1) reflection of the SmC phase and also the (2 1 1) reflection of the cubic phase. It is concluded from these data that the 'X' phase is a birefringent hexagonal columnar phase.  相似文献   

14.
The bilayer phase transitions of dialkyldimethylammonium bromides (2C(n)Br; n = 12, 14, 16) were observed by differential scanning calorimetry and high-pressure light-transmittance measurements. Under atmospheric pressure, the 2C(12)Br bilayer membrane underwent the stable transition from the lamellar crystal (L(c)) phase to the liquid crystalline (L(α)) phase. The 2C(14)Br bilayer underwent the main transition from the metastable lamellar gel (L(β)) phase to the metastable L(α) phase in addition to the stable L(c)/L(α) transition. For the 2C(16)Br bilayer, moreover, three kinds of phase transitions were observed: the metastable main transition, the metastable transition from the metastable lamellar crystal (L(c(2))) phase to the metastable L(α) phase, and the stable lamellar crystal (L(c(1)))/L(α) transition. The temperatures of all the phase transitions elevated almost linearly with increasing pressure. The temperature (T)-pressure (p) phase diagrams of the 2C(12)Br and 2C(14)Br bilayers were simple, but that of the 2C(16)Br bilayer was complex; that is, the T-p curves for the metastable main transition and the L(c(2))/L(α) transition intersect at ca. 25 MPa, which means the inversion of the relative phase stability between the metastable phases of L(β) and L(c(2)) above and below the pressure. Moreover, the T-p curve of the L(c(2))/L(α) transition was separated into two curves under high pressure, and as a result, the pressure-induced L(c(2P)) phase appeared in between. Thermodynamic quantities for phase transitions of the 2C(n)Br bilayers increased with an increase in alkyl-chain length. The chain-length dependence of the phase-transition temperature for all kinds of transitions observed suggests that the stable L(c(1))/L(α) transition incorporates the metastable L(c(2))/L(α) transition in the bilayers of 2C(n)Br with shorter alkyl chains, and the main-transition of the 2C(12)Br bilayer would occur at a temperature below 0 °C.  相似文献   

15.
The influence of pressure on the high spin-low spin phase transition (HL transition) in a model Fe(phen)2(NCS)2 (polymorph II) compound at room temperature was studied by optical spectroscopy. An increase in pressure from atmospheric to 1.814 hPa caused the complete conversion of the low-spin to high-spin phase with the transition pressure p 1/2 ↑ = 0.567 hPa at the equilibrium concentration of the high- and low-spin phases. Pressure drop caused the reverse HL transition with p 1/2 ↓ = 0.543 hPa. The HL reversible transition took place with the transition pressure p 1/2 = 0.555 hPa and hysteresis with width Δp 1/2 = 0.024 hPa. The p 1/2 value for the pressure-induced HL transition corresponded to the T 1/2 value under pressure for the temperature-induced HL transition. The pressure dependences of the fraction of the high-spin phase determined from four independent measurements of the influence of pressure on the temperature-induced HL transition and the pressure-induced HL transition obtained in this work were compared. The experimental data were used to calculate the interaction and elastic energy parameters for temperature- and pressure-induced HL transitions. The qualitative coincidence of the interaction parameters for pressure- and temperature-induced HL transitions and the equality of the interaction parameter to elastic energy under pressure led us to conclude that the influence of pressure in two experiments well corresponds to the interaction energy and does not correspond the Gibbs potential.  相似文献   

16.
A position-sensitive proportional counter (PSPC) x-ray measuring system is employed to observe directly phase transition processes of polyethylene at high temperature and high pressure. X-ray diffraction measurements reveal important new experimental data. First, an irreversible crystal transition from the hexagonal to the orthorhombic structures occurs in the critical region where the hexagonal structure begins to appear at a pressure of 350 MPa. That is, the (100) hexagonal reflection is observed only on cooling at 350 MPa. At pressures above about 400 MPa, however, the hexagonal phase is stable and the phase transitions melt ? hexagonal ? orthorhombic occur reversibly. Second, during cooling at pressures above 400 MPa, the (100) hexagonal reflection can be observed at temperatures below the hexagonal ? orthorhombic transition temperature. This behavior suggests that all the crystal morphologies of polyethylene, from “highly-extended-chain” crystals to crystals with a low melting point, are formed by the transitions melt → hexagonal → orthorhombic. Third, in heating at elevated pressures above 500 MPa, a shoulder in the peak intensity versus temperature plot for the (100) hexagonal reflection is observed at a higher temperature than the large maximum which occurs immediately after the crystal transition. This behavior indicates melting in two stages of hexagonal structures with different thermal stabilities, and the shoulder at higher temperature may be due to the fusion of the hexagonal phase annealed either below or above the transition point.  相似文献   

17.
The effect of pressure on the dinuclear spin crossover material [{Fe(bpp)(NCS)(2)}(2)(4,4'-bipy)]·2MeOH (where bpp = 2,6-bis(pyrazol-3-yl)pyridine and 4,4'-bipy = 4,4'-bipyridine, 1) has been investigated with single crystal X-ray diffraction and Raman spectroscopy using diamond anvil cell techniques. The very gradual pressure-induced spin crossover occurs between 7 and 25 kbar, and shows no evidence of crystallographic phase transitions. The pressure-induced spin transition leads to a complete LS state which is not thermally accessible. This structural evolution under pressure is in stark contrast to the previously reported thermal spin crossover behaviour, in which a symmetry-breaking, purely structural phase transition results in only partial conversion to the low spin state. This observation is attributed to the symmetry-breaking phase transition becoming unfavourable under pressure.  相似文献   

18.
The phase behaviour of the thermotropic cubic mesogen 1,2-bis(4′-n-hexyloxybenzoyl)hydrazine [BABH(6)] was investigated under pressure up to about 55 MPa using a polarising optical microscope equipped with a high-pressure optical cell. BABH(6) shows the crystal (Cr)–cubic (Cub)–isotropic liquid (I) phase transition at ambient pressure on heating. The smectic C (SmC) phase was induced above 32 MPa, showing the unusual phase sequence of Cr–Cub–SmC–I, similar to those in BABH(n) (n = 8–10). The boundary between the Cub and SmC phases exhibited a negative slope dT/dP of about –1.0 ºC MPa?1.  相似文献   

19.
The phase behaviour of a thermotropic cubic mesogen of 1,2-bis(4′-n-tetradecyloxybenzoyl)hydrazine BABH-14 was studied under hydrostatic pressure using a polarising optical microscope equipped with a high-pressure optical cell, and the PT phase diagram was constructed. BABH-14 shows the Cr–Cub–I transition sequence under atmospheric and lower pressures, but the Cub phase is replaced completely by the high-pressure SmC, SmC(hp), phase under higher pressures. There is a narrow intermediate-pressure region between the low- and high-pressure regions, in which the Cr–SmC(hp)–Cub–I phase sequence is recognised. The SmC(hp)–Cub transition line has a positive slope with pressure and there are two triple points: one is for the Cr, Cub and SmC(hp) phases and the other is for the I, Cub and SmC(hp) phases. Comparing the phase sequence of BABH-14 with those for BABH-8 and -10, the pressure-induced inversion of the phase sequence between the cubic and SmC phases occurs in the BABH-n homologous compounds. Another new phenomenon is the formation of the monotropic cubic phase on cooling in the intermediate- and high-pressure regions, and an intriguing phenomenon of the cubic phase appearing twice, i.e. I–Cub–SmC(hp)– Cub–Cr phase transition, occurs in the intermediate-pressure region.  相似文献   

20.
The structure of orthorhombic rare earth titanates of La2TiO5 and Nd2TiO5, where Ti cations are in five-fold coordination with oxygen, has been studied at high pressures by X-ray diffraction (XRD), Raman scattering measurements, and quantum mechanical calculations. Both XRD and Raman results indicated two pressure-induced phase transitions during the process. An orthorhombic super cell (a×b×2c) formed at a pressure between 6 and 10 GPa, and then transformed to a hexagonal high-pressure phase accompanied by partial decomposition. The hexagonal high-pressure phase is quenchable. Detailed structural analysis indicated that the five-coordinated TiO5 polyhedra remain during the formation of super cell, but the orthorhombic-to-hexagonal phase transition at high pressures is a reconstructive process, and the five-fold Ti-O coordination increased to more than 6. This phase transition sequence was verified by quantum mechanical calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号