首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation and rheological properties of water-in-water suspensions formed by mixing a dilute nonaqueous solution containing a lightly sulfonated ionomer with an aqueous solution are described. The spheres formed via this process are composed of a very thin (approximately 2000 Å), ionically crosslinked gel membrane which separates the continuous aqueous phase from the encapsulated aqueous phase. The membrane itself is composed of the lightly sulfonated ionomer (i. e., sulfonated polystyrene) swollen with the nonaqueous solvent. Interestingly, surface tension measurements indicate that the sulfonated ionomer in this nonaqueous solvent has no significant interfacial activity. Viscometric measurements confirm that aqueous solvents containing these spheres have considerably enhanced viscosity even in the presence of high concentrations of a salt or acid. Thixotropic behavior is observed at low shear rates, whereas Newtonian behavior is observed at higher rates of shear (> 40 sec–1). Cessation of stress reverts the viscosity to its initial value. Dilution studies show that the streamlines in the flowing exterior aqueous phase cause circulation of the aqueous fluid within the sphere. These results point to the fluid-like characteristics of the gel membrane, since transmission of the stress across the membrane is not dramatically inhibited. Comparison of the low shear rate data with the Mooney equation support these conclusion.  相似文献   

2.
The solid-state viscoelastic properties of polystyrene containing randomly distributed groups of styrene-p-sodium sulfonate are studied and compared with the corresponding properties of copolymers of styrene and sodium methacrylate (S-NaMA). The viscoelastic behavior in the primary transition region of these two ionomers is very similar. As for the S-NaMA copolymers, it is proposed that sulfonated polystyrene is composed of ion-rich regions (clusters) immersed in a matrix of low ion concentration. Two peaks are observed in the plot of mechanical loss tangent versus temperature for the sulfonated material. The lower peak is assigned to the glass transition of the ion-poor matrix and the upper to the glass transition of the clustered regions. As for some other ionomers, the presence of ions is found to slow down the stress relaxation rate, giving a broad distribution of relaxation times. Above a certain ion concentration, the sulfonated polystyrenes are thermorheologically complex owing to the onset of a secondary relaxation mechanism associated with the ion-rich regions.  相似文献   

3.
Blends of poly(2,6-dimethyl 1,4-phenylene oxide) (PPhO) with the copolymer poly(styrene-co-methacrylic acid) (PS-MAA) and the ionomer poly(styrene-co-sodium methacrylate) (PS-MAA-Na), up to 10 mol% co-unit content, were investigated by dynamic mechanical thermal measurements. The PPhO/PS-MAA-Na blends are compared with PS/PS-MAA-Na blends. The blends of PPhO with PS-MAA are no longer miscible at 10 mol% acid content; this is attributed to a copolymer effect induced by the reduction of PS-PPhO interactions due to the presence of the MAA group which does not interact favorably with PPhO. The blends of PPhO with the ionomer are already immiscible at the lowest ion content studied (2.4 mol%), but become increasingly so as ion content is increased. Despite favorable PS-PPhO interactions, these blends are only a little more miscible than the PS/PS-MAA-Na blends. This is attributed to a combination of the increasing importance of the ionomer cluster phase (from which the homopolymer chains presumably are excluded) as ion content is increased, and of a copolymer effect between the homopolymers and the unclustered phase of the ionomer. These results are compared with published data indicating that blends of PPhO with another biphasic ionomer, zinc sulfonated polystyrene, are miscible. The contrasting behavior is rationalized in part by the suggestion that the copolymer effect between PPhO and the unclustered phase of the latter ionomer, but not of the former, is absent; this is related to multiplet structure and sizes. The analysis made of the above systems is extended to predict what might be the miscibility behavior between PPhO and other PS-based ionomer and related copolymer systems. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
Near infrared spectroscopy (NIR) was used to characterize the nature of specific interactions in blends of lightly sulfonated polystyrene ionomers (M‐SPS where M = Zn+2, Mn+2, or Li+) and polycaprolactam (PA6). The assignments of the NIR overtone bands that arise due to the interactions between the cation of the ionomer, and the amide groups were made using spectra of model compounds. The relative populations of the different environments of the N? H groups were qualitatively determined by deconvoluting the NIR spectra into five absorbances representing hydrogen‐bonded N? H in crystalline and amorphous phases and an ion‐amide complex. The ion‐amide complex was specific for the blends. The interpolymer interactions were sensitive to composition and temperature, but qualitatively the behavior was the same for all three ionomer salts investigated. © 2008 Wiley Periodicals, Inc. JPolym Sci Part B: Polym Phys 46: 1602–1610, 2008  相似文献   

5.
The preparation of microcellular polystyrene (PS), lightly sulfonated polystyrene (SPS), zinc‐neutralized lightly sulfonated polystyrene (ZnSPS), and blends of PS/SPS and PS/ZnSPS via supercritical CO2 was carried out with the pressure‐quench process. Both higher foaming temperature and lower pressure result in larger cell sizes, lower cell densities, and lower relative density for microcellular ionomers and blends as for microcellular PS. The difference among various microcellular samples is the change of cell size with the sample composition. The cell size decreases in the sequence from SPS, through PS/SPS blends, PS and PS/ZnSPS blends, to ZnSPS. The diffusivity of CO2 in samples also decreases in the sequence from SPS, through PS/SPS blends, PS and PS/ZnSPS blends, to ZnSPS. For this series of samples with similar structure and identical solubility of CO2, the varying diffusivity is responsible for the difference of cell sizes. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 368–377, 2003  相似文献   

6.
Blends of polyamide-6 with lithium ionomers of 9.8 and 5.4 mole percent sulfonated polystyrene, formed by combining solutions of these polymers, are miscible over a wide compositional range, but those with the equivalent sodium ionomers are not. The molecular origin of this difference is addressed by studying the far infared and infrared spectra of the blends and pure materials to follow changes in the interactions between the cations and their surroundings, and changes in the interactions between functional groups. Based on analysis of these spectra, a molecular level interpretation of the blending is proposed. The initial step involves both the interaction of one amide carbonyl with an Li+ ion and simultaneous hydrogen bonding between an amide N? H and a sulfonate group. This eventually leads to formation of an Li(>CO)+n(n ~ 4) entity while the sulfonates are converted to the acid form through hydrogen bonding to the amide N? H groups. The Na+ ion does not interact strongly enough with the amide groups to leave its sulfonate environment to a significant extent. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
Small- and wide-angle x-ray scattering results for a series of un-neutralized and neutralized sulfonated polystyrenes are presented for the range of sulfonation from 0 to 7.26 mol %. From the small-angle scattering it is shown that above the 3 mol % level for both the zinc and sodium salts, a Bragg spacing (37 Å) and diameter (6.9–8.4 Å) of the scattering unit can be calculated. When the concentration of salt is increased, there is no appreciable change in the latter two measurements. The wide-angle data indicate that the cations do not influence to any large extent the basic intramolecular and intermolecular structure of polystyrene. All the data are consistent with the onset of clustering above a critical ion concentration.  相似文献   

8.
离聚物对含液晶聚合物聚砜体系的增容作用   总被引:3,自引:3,他引:3  
离聚物对含液晶聚合物聚砜体系的增容作用刘杰,何嘉松(中国科学院化学研究所工程塑料国家重点实验室北京100080)关键词增容作用,离子聚合物,热致液晶聚合物,高分子共混物,原位复合材料工程塑料与液晶聚合物(Lry)共混(形成所谓的原位复合材料)时在降低...  相似文献   

9.
Abstract

The phase behaviour of blends of poly(ethylene oxide) (PEO) with the liquid crystal p-azoxyanisole (PAA) has been studied by differential scanning calorimetry and optical microscopy. This system exhibits partial miscibility of the components in the molten state (at temperatures above 337 K). The melting temperature and enthalpy of the PAA phase has been found to depend on the blend composition, whereas the melting behaviour of the polymer phase remains quite unaltered. The occurrence of the PAA nematic phase, dispersed within an isotropic liquid phase, has been observed at high concentrations of liquid crystal. The morphology of the blends in the solid state changes largely with the PAA content, depending on the solubility of the components in the liquid phase.  相似文献   

10.
The effect of counterions on the solution properties of two types of ionomers, one based on sulfonated polystyrene and the other based on styrene–methacrylic acid copolymer, was studied by viscosity and light scattering measurements. It was found that the order of counterion binding of ionomers in a polar solvent and the order of aggregation of ionomers in a low-polarity solvent were the same for the same ionomer system. However, the order for the sulfonated ionomer was Li < Na < K < Cs, whereas that for the carboxylated ionomer was the opposite. This can be explained by a difference in desolvation during anion–cation interaction and by considering site-binding in a polar solvent and the association of ion pairs in a low-polarity solvent. These findings for ionomer systems are parallel to the association behavior of small ions in water, cation affinity in crosslinked resins, and counterion binding of polyelectrolytes in water.  相似文献   

11.
Fourier Transform Infrared spectroscopy (FTIR) and Wide‐Angle X‐Ray Diffraction (WAXD) measurements have clearly established the occurrence of a dual sorption ability of sulfonated syndiotactic polystyrene samples, which exhibit the nanoporous δ crystalline phase. In fact, large uptake (up to 20–30 wt%) of ionic liquid (IL; e.g. 1‐ethyl‐3‐methylimidazolium dicyanamide) occurs only in the hydrophilic amorphous sulfonated phases and does not disturb the hydrophobic nanoporous crystalline δ phase. On the other hand, a large uptake of organic guests (e.g. naphthalene) occurs prevailingly in the nanoporous hydrophobic crystalline phase, independently of the presence of the IL in the amorphous phase, eventually leading to the formation of syndiotactic polystyrene co‐crystalline phases. The thermal stability of IL can be largely increased by their inclusion in the amorphous phase of sulfonated syndiotactic polystyrene films. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
向聚苯乙烯(PS)中引入磺酸基团可以有效地改善PS与一种热致液晶聚合物(LCP)之间的相容性.用溶液共混的方法制备了PS和磺化聚苯乙烯(HSPS)与LCP的共混物.用FTIR以及红外光谱的合成技术对LCP共混体系进行了表征.共混物中组分聚合物特征吸收的位置和谱图的形状表明在LCP与PS分子间没有相互作用发生,而在LCP与HSPS分子间则存在较强的相互作用.谱图差减技术确认了LCP分子中CO与CO基团和HSPS中的磺酸基团参与了相互作用,使得这些基团的特征吸收发生了偏移.  相似文献   

13.
A new multi‐variable‐measurement approach for characterizing and correlating the nanoscale and microscale morphology of crystal‐amorphous polymer blends with melt‐phase behavior is described. A vertical small‐angle light scattering (SALS) instrument optimized for examining the scattering and light transmitted from structures ranging from 0.5 to 50 μm, thereby spanning the size range characteristic of the initial‐to‐late stages of thermal‐phase transitions (e.g., melt‐phase separation and crystallization) in crystal‐amorphous polymer blends, was constructed. The SALS instrument was interfaced with differential scanning calorimetry (DSC), and simultaneous SALS/DSC/transmission measurements were performed. We show that the measurement of transmitted light and SALS under HV (cross‐polarized) optical alignments during melting can be used to reliably measure the thermodynamic (e.g., crystal melting and melt‐phase separation temperatures) and structural variables (e.g., crystalline fraction within the superstructures and volume fraction of superstructures) necessary for describing the multiphase behavior of crystal‐amorphous blends in one combined measurement. We also evaluate the orientation correlations of crystalline volume elements within the superstructures. Our results indicate that simultaneous measurement of transmitted light can provide a reliable estimate of the total scattering from density and orientation fluctuations and the melt‐phase separation temperature of polymer blends. For solution‐cast poly(?‐caprolactone)/poly(D,L‐lactic acid) blends, our multivariable measurements during melting provide the parameters necessary to generate a crystal–liquid and liquid–liquid phase diagram and characterize the solid‐state morphology. This opens up the challenge to explore use of our vertical SALS instrument as a rapid and convenient method for developing structure–property relationships for crystal‐amorphous polymer blends. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2714–2727, 2002  相似文献   

14.
As part of a continuing study of ion-containing polymers, a comparison has been made on styrene-based sulfonate ionomers obtained by two different processes. Copolymers of styrene with sodium styrene sulfonate (SSS) have been compared with corresponding polymers obtained by the sulfonation/neutralization of preformed polystyrene (S–PS). The former system covered a range of sulfonate level from 1 to 30 mol %, while the latter ranged from about 1 to 7 mol %. The characterization of these materials has been conducted using solubility behavior, dilute solution viscometry, thermal mechanical analysis, density measurements, and water adsorption studies. At low (ca. 1%) levels the solubility behavior of the SSS copolymers and the sulfonated polystyrenes were similar. However, at higher sulfonate levels the solubility behavior in different solvents and the dilute solution viscometry were significantly different for the two systems. Similarly, thermal analysis studies (DSC) showed that the glass transition of the sulfonated polystyrene increased linearly with sulfonate level, while the Tg for the SSS copolymer increased modestly, up to about 7 mol % sulfonate content, and then remained constant. Significant differences in the softening behavior and water absorption characteristics were also observed for these two classes of ionomers. Although molecular weights and molecular weight distributions are not now available for these ionomers, the differences in their behavior does not appear to be due simply to differences in molecular weight. It is postulated that the differences in the copolymer and the S–PS ionomers may originate with differences in sulfonate distribution. It is suggested that the SSS monomer units are incorporated as blocks in the copolymer as opposed to a more random distribution in the S–PS ionomer. Indirect evidence in support of his argument is found, for example, in the case of the copolymer in the solubility behavior, the relative independence of Tg on sulfonate concentration and the apparent existence of a second, high temperature transition tentatively attributable to an ion-rich phase. Additional studies are required to confirm this hypothesis.  相似文献   

15.
The specific volume-temperature relationships of polystyrene, poly(2-chlorostyrene), and their polymer blends as well as the volume change of mixing Δvm of the blends were obtained in the liquid state by dilatometry. The equation of state parameter and the molecular parameter of each homopolymer and blends were determined according to the lattice fluid theory of Sanchez and Lacombe. The experimental Δvm obtained agreed quite well with that predicted from theory, and the enthalpy of mixing ΔHm was also predicted using the pair molecular parameter. These two values were negative, indicative of miscibility of polystyrene and poly(2-chlorostyrene) in the liquid state. The absolute values of Δvm and ΔHm were about twice those for polystyrene and poly(phenylene oxide) blend, suggesting a specific interaction between the two polymers.  相似文献   

16.
Reactive compatibilization using liquid polybutadienes and dialkyl peroxides was studied in model low‐density polyethylene/polystyrene (4/1) blends and the commingled waste of composition similar to these blends. The influence of three types of lubricants (Ca stearate, stearic acid ‐ Loxiol G20 and paraffin ‐ Loxiol G22) on the structure and toughness of these blends was determined. In spite of the fact that in the waste material, a coarse morphology and poor toughness were found in comparison with the blend of virgin polyolefins, reactive compatibilization has approximately the same effect in both types of the blends as far as the structure parameters and mechanical behaviour are concerned. This effect is enhanced by addition of lubricants, the most efficient being the paraffin in the model blends, probably due to its partial miscibility with LDPE. In the commingled waste, liquid polybutadienes supported on precipitated SiO2 appear to be quite efficient. No influence of the reactive compatibilization on both the crystal modification and the crystalline content was observed in both types of these blends.  相似文献   

17.
The sodium salts of randomly sulfonated polysulfone (Na-SPSF), derived from 1,1′-sulfonylbis-[4-chlorobenzene] with 4,4′-(1-methylethylidene)-bis-[phenol], were prepared over the composition range of 3–30 mol% sodium sulfonate, using improved procedures in which the sulfonating complex was introduced into an intensely agitated polymer solution. In contrast to earlier work, Tg was found to increase nonlinearly with sodium sulfonate content. A SAXS study provided no evidence of ionic clustering in these polymers. Binary blends of Na-SPSFs differing only in composition were prepared by casting films from solution, and their phase behavior was studied by dynamic mechanical analysis after annealing at 250°C. It was found that the blends were miscible up to a composition difference of about 9–10 mol% sodium sulfonate. Using this fact it was possible to calculate a value for χABn of 200–250, where χAB represents the segmental interaction parameter between unmodified and modified repeat units, and n is the degree of polymerization. Uncertainty in the degree of ionic association places a degree of uncertainty on the effective value of n and therefore on χAB. The product, however, is independent of any assumptions regarding molecular associations.  相似文献   

18.
The lightly sulfonated polystyrene ionomer is only soluble in some organic solvents, such as toluene and tetrahydrofurnan (THF). The mixture of its organic solution with water normally leads to macroscopic phase separation, namely precipitation. In this study, using the steady-state fluorescence, the nonradiative energy transfer and dynamic laser light scattering, we demonstrate that the sulfonated polystyrene ionomers can form stable colloidal nanoparticles if the THF solution of the ionomers is dropwisely added into an excessive amount of water, or vice verse, water is added in a dropwise fashion into the dilute ionomer THF solution under ultrasonification or fast stirring. The hydrophobic core made of the polystyrene backbone chains is stabilized by the ionic groups on the particle surface. Such formed stable nanoparticles have a relatively narrow size distribution with an average diameter in the range of 5–12 nm, depending on the degree of sulfonation, the initial concentration of the ionomer THF solution, and the mixing order. This study shows another way to prepare surfactant-free polystyrene nanoparticles. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1593–1599, 1997  相似文献   

19.
This work examined the effect of the pre‐melting temperature (Tmax) on the thermal properties and crystalline structure of four miscible syndiotactic polystyrene (sPS)‐based blends containing 80 wt % sPS. The counterparts for sPS included a high‐molecular‐weight atactic polystyrene [aPS(H)], a medium‐molecular‐weight atactic polystyrene [aPS(M)], a low‐molecular‐weight atactic polystyrene [aPS(L)], and a low‐molecular‐weight poly(styrene‐co‐α‐methyl styrene) [P(S‐co‐αMS)]. According to differential scanning calorimetry measurements, upon nonisothermal melt crystallization, the crystallization of sPS shifted to lower temperatures in the blends, and the shift followed this order of counterpart addition: P(S‐co‐αMS) > aPS(L) > aPS(M) > aPS(H). The change in Tmax (from 285 to 315 °C) influenced the crystallization of sPS in the blends to different degrees, depending on the counterpart's molecular weight and cooling rate. The change in Tmax also affected the complex melting behaviors of pure sPS and an sPS/aPS(H) blend, but it affected those of the other blends to a lesser extent. Microscopy investigations demonstrated that changing Tmax slightly affected the blends' crystalline morphology, but it apparently altered that of pure sPS. Furthermore, the X‐ray diffraction results revealed that the α‐form sPS crystal content in the blends generally decreased with an increase in Tmax, and it decreased with a decrease in the cooling rate as well. The blends showed a lower α‐form content than pure sPS; a counterpart of a lower molecular weight more effectively reduced the formation of α‐form crystals. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2798–2810, 2006  相似文献   

20.
The interaction of several plasticizers with the zinc cation in zinc-neutralized sulfonated polystyrene was examined with extended x-ray absorption fine structure (EXAFS) spectroscopy. Glycerol and water were found to interact strongly with the zinc cation, plasticizing the ionic aggregates. At full solvation by glycerol, the zinc atom was found to be coordinated by three glycerol molecules. Dioctylphthalate, acetonitrile, and toluene, which are unable to coordinate to the zinc cation, were found to have a minimal effect on the cation's local structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号